
 1

Abstract— The paper proposes a more formalized definition of

UML 2.0 Activity Diagram semantics. A subset of activity
diagram constructs relevant for business process modeling is
considered. The semantics definition is based on the original
token flow methodology, but a more constructive approach is
used. The Activity Diagram Virtual machine is defined by means
of a metamodel, with operations defined by a mix of pseudocode
and OCL pre- and postconditions. A formal procedure is
described which builds the virtual machine for any activity
diagram. The relatively complicated original token movement
rules in control nodes and edges are combined into paths from an
action to action. A new approach is the use of different (push and
pull) engines, which move tokens along the paths. Pull engines
are used for paths containing join nodes, where the movement of
several tokens must be coordinated. The proposed virtual
machine approach makes the activity semantics definition more
transparent where the token movement can be easily traced.
However, the main benefit of the approach is the possibility to
use the defined virtual machine as a basis for UML activity
diagram based workflow or simulation engine.

I. INTRODUCTION
The UML 2.0 standard (Standard), whose development was
started in 2002, now is under the final adoption [1]. Activity
diagrams (AD) are redesigned radically in the Standard, where
besides significant syntax modification the main difference is
switching from State Machine based semantics to the token
flow (Petri net like) semantics. The semantics sections in the
Standard contain an informal description for each AD element,
how this element influences the token movement in a diagram.
Though these descriptions of AD semantics are sufficient for
informal modeling of processes, the formality level is not
sufficient for the use of activity diagrams as precise process
definitions, e.g., for workflow specification.
The goal of this paper is to define an Activity Diagram Virtual
Machine (ADVM), which would describe this token-based
semantics formally enough for process execution. The paper
proposes an ADVM for a subset of activity diagram features,
which are significant for business process modeling and
definition [2]. ADVM itself is defined by means of a runtime
extension to the metamodel, whose operations are defined by

Manuscript received in April 1, 2005. This work was supported in part by

European Social Fund (ESF).
Valdis Vitolins, University of Latvia, IMCS, 29 Raina blvd, Riga, Latvia,

Valdis_Vitolins@exigengroup.lv
Audris Kalnins, University of Latvia, IMCS, 29 Raina blvd, Riga, Latvia,

Audris.Kalnins@mii.lu.lv

means of a procedural OCL-based pseudocode and pure OCL
pre- and postconditions [3]. Though the size of the paper does
not permit to present completely formal descriptions for all
operations of ADVM, the provided methodology is sufficient
for achieving this goal. The structure of the proposed ADVM
is, on the one hand, meant to be simple enough for precise
analysis of process definitions by humans. On the other hand,
it could be used as the basis, e.g., for an activity diagram
based workflow engine. It should be noted that a similar
approach could be used also for “cleaning up” all the
remaining semantic problems in the Standard, e.g., those
related to single execution.
The definition of ADVM in the paper is divided into two
parts. Section IV shows how a “runtime copy” is built for an
activity diagram. Section V provides the definitions of all
runtime operations. A possible usage of the approach is given
in the conclusion.
There are only few papers commenting the intended informal
semantics of AD [2,8,9], even less research is devoted to
formal definition of UML 2.0 activity diagram semantics.
Many of them use pure Petri nets, in such a way losing some
semantics for data tokens [4,5]. The approach closest to the
one used in this paper is in [6]. There a similar subset
including object flows is analyzed. The main difference is that
[6] uses a translator to classic (colored) Petri nets. Though this
enables the use of formal process analyzers, Petri nets are not
the best model for understanding workflows [4]. Therefore our
approach which tries to rely on the original AD notation as
much as possible in semantics definition is more suited for
workflows, even if it doesn't support a formal mathematical
analysis.

II. SUBSET OF THE UML 2.0 ACTIVITY DIAGRAM AND
LIMITATIONS

A. Used Subset of the UML Activity Diagram
Since the number of concepts and the metamodel for UML 2.0
activity diagrams is very large, only "the most essential"
subset of AD is considered in this paper. On the other hand,
focus is on those AD elements, which directly influence the
token movement semantics. Finally, a number of useful
constructs are not included just to limit the paper size. But the
main idea is to show that the used techniques work for the
precise formalization of a subset of AD reasonable for process
modeling. More concepts for which these techniques should
work also are listed in the conclusion.

Semantics of UML 2.0 Activity Diagram for
Business Modeling by Means of Virtual

Machine
Valdis Vitolins, Audris Kalnins

 2

In the Standard the activity diagram definition is structured
into packages with ever growing complexity – Fundamental,
Basic, Intermediate, Complete (and some other which form a
sideline of no great interest for business modeling). The subset
analyzed in this paper contains (almost completely) concepts
from Fundamental to Intermediate activities. We have
included Activities, Actions, Control and Object flows,
Activity Parameter nodes, Pins and all Control nodes. Namely
these concepts are most relevant for the semantics definition
by means of token movement. From Intermediate Activities,
we have not included Activity Partitions and Groups, because
they are not relevant for token management.
Now more detailed comments on the subset. The most
essential is the choice of subclasses of Object nodes. Only the
Pins (Input and Output) and Activity Parameter nodes are
included. Central buffers (with relatively complicated
semantics) are not included because they are mostly used for
physical system modeling [8]. No explicit object nodes are
used for object flows – only the output and input pins at ends.
Certainly, there is a certain controversy about object nodes in
the Standard itself – ObjectNode is an abstract class, but has a
graphical notation and a defined semantics.
There are also restrictions on flows. First, object flows must
mandatory have pins at points, where they are connected to
actions (certainly, not at control nodes, exceptions see below).
On the one hand, the existence of explicit pins makes the
semantics definition much more transparent and similar to
Petri nets – there are places for tokens to live in. On the other
hand, this notation has already been accepted in practice – the
most advanced UML 2.0 tool at this moment (IBM Rational's
RSA [7]) uses only this notation. In addition, there is a natural
restriction that each flow leaving (or entering) an action has a
separate pin. Pins can have no upper bounds, and they have
either a specified type or no type – for accepting values of
several different types (e.g., the result of a Join). In the current
version of Standard it is permitted to have also control pins
(i.e., pins with isControlType=true). Using this fact, we
require in our subset that control flows also must have pins at
any (possible) end. Just to make the description of our ADVM
shorter, we use in this paper a different criterion: control pins
(and tokens) have the NULL type. Thus, in fact we can
consider control flows to be a special case of object flows.
Certainly, all the semantics specific only to control flows and
tokens is retained. The final assumption on flows is that initial
nodes also must have output (control) pins and final nodes
must have input pins (of any relevant type). Though not
suggested by the Standard, it does not contradict either (e.g., it
is asserted, that a CentralBufferNode might be used after the
initial node), and the semantics is not changed this way. Thus,
flows have pins wherever possible. Fig. 2 shows a diagram
example in our subset. Actually, all this section on flows just
restricts the diagram drawing – any reasonable Intermediate
level diagram can be redrawn this way.
The next issue is actions. From all the action types available at
Intermediate level only the CallBehaviorAction makes sense
for business modeling, therefore only this was included in the
subset [9]. This action can invoke either an OpaqueBehavior
(elementary task) or another Activity.
An additional requirement is that at any Decision node the
outgoing edges must have mutually exclusive guards – a

requirement found useful also in the Standard. The main real
restriction for decisions (and any edge in general) is that
guards are not allowed to use data from the activity context
(i.e., only the data from the current token may be used).
Only one element from Complete activities is included – join
specifications (they also may use token data only).
The selected subset implies two general restrictions on token
movement – there may be no real “race for token” by several
actions, and the guard value on a token cannot change in time.
See more on this in section VI.
The Intermediate level uses separate execution, so only this
mode is considered in the paper. This mode is sufficient for
most cases of process modeling, e.g., workflow definition.
Though there are some semantic problems with single
execution in the Standard, our approach could be extended to
single execution quite easily (see IV.A).
Fig. 3 shows the metamodel of the selected subset (light
classes). To reduce the number of classes, the package merge
has been performed, and some unnecessary for the paper
classes and inheritance hierarchies have also been removed.
Capitalized names are used in the paper as exact references to
the metamodel classes (e.g. Activity), lowercase names are
used as a generic term or arbitrary instance of this class (e.g.
token).

B. Additional restrictions for Activity Diagrams
In addition to the restrictions imposed by UML 2.0, we
assume that Activity Diagram is correct if and only if:
a) outgoing edge from a ControlNode is not an incoming

edge for the same ControlNode
b) there should be no paths between CallBehaviorActions,

InitialNodes, FinalNodes or ActivityParameterNodes
containing both ForkNodes and JoinNodes.

So, invalid cases for a) and b) are:

a) b)

... ...

Fig. 1 Invalid constructs for activity diagram – loops and ForkNodes in the
same path with JoinNodes
Reason for a) is obvious - it prevents deadlocks for control
nodes waiting for input, which should be provided by
themselves.
Restriction b) is reasonable from the practical point of view,
because there is no need to make parallel branches, if they are
simply joined back without any operation in these branches
(i.e. there is no CallBehaviorAction between them). This
restriction significantly simplifies rules for token movement.
We assume that AD is validated before the diagram execution.

III. GENERAL DESCRIPTION OF UML 2.0 AD AND OUR VM
Let us give an example of activity diagram in the described
subset. This example is similar to the one used in the Standard,
but with some modifications illustrating all the key elements.
Actually the process is described by two AD, and the main
AD Process Order invokes another one – Make Payment. The
main diagram starts with the initial node, then the process
flows through decision-, fork-, join- and merge nodes and

 3

finishes in ActivityFinal node. The MakePayment action
invokes the subordinated activity, which starts and finishes
with activity parameter nodes. All flows (control and object)
have pins at their action ends (and also at initial and final
nodes) – as it is required by our subset. Control pins have no
type. Note that an object pin also may be typeless (the input
pin of Close Order), here this is the only way to preserve the
type conformance after merge and join nodes. Namely, this
input pin must be able to hold tokens of types both Order and
Payment. The advantage for semantics definition of using all
these explicit pins is that we always have a place for tokens to
"live in" – much in the same way as places in Petri nets are
used.

Make PaymentFill Order

Payment

Send Invoice

Accept
Payment

Payment

Order

Ship Order
Order

Order

Order

Order

Order

Close Order

Invoice

InvoiceMake Payment

Receive Order

Order

Payment

Order

Process Order

[Order Accepted]

[Order
Rejected]

Fig. 2 Example activity diagram “Process order” which invokes sub
activity diagram “Make Payment” from action “Make Payment”

A. Standard semantics of Activity diagrams
In Standard the activity diagram semantics is described in a
highly distributed manner, where each AD element has its role
in AD execution - fork, decision, merge and join nodes each
process token flow in their own way. E.g., for a ForkNode,
“when an offered token is accepted on all the outgoing edges,
duplicates of the token are made and one copy traverses each
edge”. But for JoinNode, “if there is a token offered on all
incoming edges, then tokens are offered on the outgoing
edge”. The term offered actually needs to be understood more
formally. The sole reasonable interpretation of “offered” is
that a token is not actually moved along the edge, but only
becomes visible through this edge. When there is a sequence
of edges and control nodes in a diagram, these "offering
visibility" rules define a sort of "transitive closure visibility",
by which tokens from output pins become visible to their
actual consumers – actions, certainly, via their input pins.
Now, according to the Standard, an Action is executed “when
all of the input pins are offered tokens and accept them all at
once, precluding them from being consumed by any other

actions”. Namely at this moment the required set of tokens
move to their corresponding input pins. This actually means
that action uses pull semantics for token processing – the only
really active elements in a diagram are the "action engines",
which try to fill up their input pins with fresh sets of tokens, to
be consumed by these actions. The “all at once” phrase in the
definition actually means that all tokens from each output pin,
which “offers” tokens (is visible) to the action are consumed.
Especially, if there is a join before the action, which joins
object flows, then all tokens from these output pins are
“serialized” and provided to the relevant input pin of the
action as one coherent group. It should be noted that this
semiformal semantics is well defined only for separate
execution (for single execution e.g. the "merging" of control
tokens could lead to a loss of concurrent control threads), but
this is a topic of a separate paper.
It is clear that a "standard Activity Diagram Virtual Machine"
(ADVM) could be defined, with "action engines" as the only
active elements. However, the formalization of the entire
"offering" (visibility) rules by a sort of "traffic switches"
affecting the token movement would be highly complicated –
visibility rules are harder to implement than simple actions.

B. General principles of proposed ADVM
In this paper we propose a different approach to building an
ADVM. Subgraphs of edges and control nodes connecting
"stable places" – output and input pins are "truncated" into
explicit paths leading directly from output pins to input pins
in our definition of ADVM. Each path has a condition – the
guards of its edges "anded" together. Pins in turn may be
serviced by active elements – token engines. We introduce
two different kinds - Push and Pull token engines.
The same way, there are also two kinds of paths – push and
pull paths. Push paths are those containing only Decision,
Merge and Fork nodes (or no control nodes at all). A push
path is "serviced" by a Push engine in its start node – the
corresponding output pin. In our subset tokens from an output
pin can be pushed via push paths independently from each
other directly to their destinations – input pins, whenever path
conditions permit it (see a formal justification for it in section
VI). Thus token movement is very transparent in the push
case.
Pull paths are those containing at least one Join node (and
Decisions and Merges, but no Forks in our subset!). Pull paths
are serviced by a Pull engine at their destination – an input
pin. According to the AD semantics, the movement of tokens
along pull paths having a common destination must be
coordinated – only an adequate set of tokens can jointly pass a
Join node. When these tokens are object tokens, then
according to the Standard they must jointly continue their
travel. Therefore the concept of Token Group is introduced in
our ADVM – it is the set of tokens, which is jointly pulled by
a Pull Engine into its serviced input pin. It should be noted
that the same input pin may contain groups with different
structure – in case when pull paths contain merge nodes. In,
addition, the pulled in groups must satisfy the join criteria –
"anded" join specifications. For pure control tokens there are
no groups – they are "collapsed" into one token according to
the Standard semantics.

 4

Thus, the pull engine is much more complicated than the push
one – but such is the UML semantics. Pull engine is described
in detail in section V.D.
The Action engine is much simpler than its counterpart in the
original semantics. Its sole task is to seize one token from each
input pin (or whole one group, if this is a pull pin), when a
complete set is present and to "consume" this set. Certainly,
when the action invokes a subordinated activity it has to
provide its input parameters and collect the output parameters.
The main semantic difference between our and the standard
action engine is that for our engine tokens (or groups) are
moved (by token engines) independently to each input pin,
while (as it was cited) the standard engine pulls them “all at
once”. However, this cannot lead to serious differences in
behavior, since real "races for tokens" by several actions are
impossible in our subset – see more in section VI.
Finally, the invocation, start up and termination of an activity
are managed by the relatively straightforward Activity engine
(ActivityR class).
The rest of the paper is devoted to the formal description of
the proposed ADVM, while the section VI provides a
semiformal justification that the semantics formalized by the
proposed ADVM is the same standard one (for the selected
subset) – the action traces actually coincide.
Thus, the goal of this research has been to provide a complete
executable formalization of activity diagram semantics by an
ADVM, which could both be analyzed theoretically and serve

as a "prototype" for real AD execution (e.g., as a workflow
engine). Authors hope that the provided ADVM is more
usable for various kinds of formal analysis than the informal
original semantics description.

C. Metamodel extensions and model mapping
In order to define an ADVM formally, the metamodel of AD
must be extended. One solution is to add operations to the
original metaclasses, but since our ADVM requires new
concepts, a more natural solution is to build a special AD
runtime metamodel containing appropriate classes with
operations. Most of the new classes are "dynamic"
counterparts of the corresponding "static" classes of AD
metamodel. Fig.3 shows both metamodels combined - the
original classes are light and the new ones dark. We remind
that the AD metamodel is "flattened" with respect to the
standard one in order to reduce its size. Whenever possible,
the corresponding classes in both metamodels are linked by
special bi-directional associations (so called mapping
associations, dashed lines). Only the main "internal"
associations for both metamodels are depicted in Fig.3.
For figure simplicity, compositions in Fig. 3 and Fig. 4 are
drawn as trees, by merging the composition ends into a single
segment, according to the Standard presentation options.
Adornments on that single segment apply to all of the
composition ends. Lines are joined only by "T" junctions, "X"
junctions are simple line crosses.

Activity
isSingleExecution: Boolean = False CallBehaviorAction

ActivityParameterNode

ObjectFlow

Constraint
Input Pin Output Pin

Type

ValueSpecification JoinNode

FlowFinalNode

ActivityFinalNode

InitialNode

DecisionNode

ForkNode

MergeNode

Behavior

ActivityNode

ActivityEdge

ObjectNode

ControlNode
FinalNode

Parameter

OpaqueBehavior

Queue

IntermediateNode

TokenEngine

Final

ParameterR

ActionBody

Condition

Edge

OutputQueue

Token
tokenID: long
value

Type

Merge

Fork

Decision

Initial

ActivityFinal

FlowFinal

Join

StableNode

Path

ActivityR Action

InputQueue

output
 *

 1..*

input *

 parameter 1

 1..*
 0..1

outgoing

input

 *

0..1

 parameter *

incoming

output

 *

 0..1returnResult
 *

node *

joinSpec
 1

 type*
1target

incoming
 1

 *

source
outgoing

 1
 *

 parameter
{ordered} * *

incoming

target

 1

 0..1

 1..*

 locus

 token

 0..1

 1..*

outgoing

source

 1

 0..1

incoming
sourceNode

 *
 0..1

outgoing
targetNode

 *

 0..1

 behavior 0..1

incomingPath

finish

 *

 1

 behavior *

1

formalParameter *

 edge
 *

guard 1
0..1

outgoingPath

start

 *

 1

Fig. 3 Subset of the UML activity diagram and relations to their runtime classes

The main idea is that when an activity is invoked, the
corresponding runtime class instances are created for the
activity instance and all its components. Namely these
instances act as the virtual machine executing the given
activity. The creation of these runtime instances is singled out
as a separate step in execution and described in section IV.

Actually, the creation of runtime instances from activity model
instances is a model transformation, where the source model is
the Activity diagram definition, but the target model
represents instances of the runtime classes. In that sense Fig.3
represents a "general transformation schema", where the
mapping associations have a formal semantics in this
transformation. In the direction from a definition class to

 5

runtime class it means, that in the transformation process for
each instance of the definition class one instance of runtime
class should be created. In the opposite direction it shows,
from which definition instance the runtime instance is created.
This information is used when new instances should be
created with specific properties, which can be got only from
the source model.
To save space, multiplicities and role names are not shown for
mapping associations, but they are 1 at the definition end
and 0..1 at runtime end. Such associations are typical for
model transformations. Formally we can say that these
additional associations are coming from our transformation
package, which is merged with a subset of the Standard
Activity Diagram metamodel.
In this paper the transformations are described by a mix of
pseudocode and OCL postconditions. But they could be
described as well by means of specialized transformation
languages, such as MOLA [10] or QVT-Merge [11].

IV. ACTIVITY CONSTRUCTION

A. Activity Execution and Invocation
According to the Standard there are two stages of activity
performing – creation of the activity execution and activity
invocation. Our ADVM assigns a precise meaning to them:
1. Activity execution means creation of the activity runtime

instance (ActivityR and its components) and its activation.
In this stage only the necessary elements are created, but no
tokens or parameters are passed. These operations are done
using the ActivityFactory class and ActivityR.activate()
operation.

2. Activity invocation means activity starting using the
invoke(Object[*]) operation of the ActivityR class. It could
be invoked in the following ways:
a) if the activity has an InitialNode, it is invoked without

parameters. Then invoke() method puts control tokens
into OutputQuee for all InitialNodes.

b) if the activity has input parameters, it is started using
parameters by invoke(Object[*]), which places data
tokens with appropriate values into all inputParameter
nodes (OutputQueues) of the activity.

When the construction of an AD runtime instance is complete,
it is activated using the activate() method. This method fires
processes for token engines, actions, final nodes and activity,
and they are ready for token processing, but no tokens are
created in this method. Activity invocation only provides a
new set of tokens inside an existing activity runtime instance.
For activity creation we use a special ActivityFactory class
(Fig. 4). There is only one instance of the ActivityFactory and
it is used for creation of each new activity. Thus
ActivityFactory plays the role of an entry point for ADVM.
The operation createActivity(Activity) of the ActivityFactory is
used for construction of the runtime instances. This operation
checks, whether the activity has single or separate execution
mode. If the execution mode is separate, a new activity
runtime instance is always created. If the mode is single, the
operation checks, whether an appropriate instance for this
Activity already exists and creates a new instance only if it
doesn't exist. The createActivity() operation returns a reference

to the runtime (ActivityR) instance and further management of
the activity execution is made through ActivityR operations.
To clarify the sequence of ADVM construction, the creation
process is separated into several steps, which are performed
through gradual invocation of the factory create..() methods:
createAction(), creteInputQueue(), creteOutputQueue(),
createIntermediateNode() methods create runtime instances
for the main elements of Activity – Actions, Pins and flow
control nodes. createInitial(), createFlowFinal() and
createActivityFinal() methods create runtime instances for
these kinds of nodes and input/output queues for them.
Using the formalParameter and returnResult associations,
activity parameter nodes are fetched and
createInput/OutputQueue() methods create appropriate
input/output queues and runtime parameters (ParameterR)
from them. The createEdges() method creates runtime
instance for each ObjectFlow (using Activity.edge).
ActivityEdge Guards in an AD model are transformed into
Conditions for Edges.
Then the “nontrivial elements” - paths and token engines are
created using createPaths(), createTokenEngines() and
createJoinCriteria() methods. These methods will be
explained in details in section IV.D. If an activity has no
ActivityFinal nodes, a boolean tag is set, which enables a
process for checking whether all outputParameter nodes have
tokens (an alternative way of completing the execution) .
It should be noted, that only the main class instances are
created using the factory class. Associated attributes and
simple instances are created using local addNew() methods.

ActivityFactory
createActivity(Activity): ActivityR
createAction(CallBehaviorAction)
createIntermediateNode(ControlNode)
createEdge(ActivityEdge)
createInputQueue(ActivityNode)
createOutputQueue(ActivityNode)
createInitial(IntitialNode)
createActivityFinal(ActivityFinalNode)
createFlowFinal (FlowFinalNode)
createPaths(ActivityR)
createPath(start, finish, isJoin, guard)
createTokenEngines(ActivityR)
createTokenEngine(Queue, engineType)
createJoinCriteria(PullEngine)

Fig. 4 ActivityFactory class and its operations

B. Activity Construction
The following code shows process of the instance creation:
public ActivityR createActivity(Activity actD) {
 actR = ActivityR.addNew(); // create empty activity
 for (element in actD.activityNode) { // for each
ActivityNode
 switch (oclIsTypeOf(element)) { case (InitialNode) {
 createInitial(element); // create Inital node
 createOutputQueue(element);} // and create queue for it
 . . . /* similarly create runtime elements for

CallBehaviorAction, InputPin, OutputPin, ForkNode,
JoinNode, DecisionNode, MergeNode */

 case (FlowFinalNode) {
 createFlowFinal(element);
 // create FlowFinal or node and
 creteInputQueue(element); } // create queue for it
 . . . /* similarly for ActivityFinalNode */

 6

 case (ActivityParameterNode) continue; }
 // skip ActivityParameterNodes
 for (element in actD.formalParameter) {
 creteOutputQueue(element); // create OutputQueues
 actR.parameter.addNew(element.parameter);}
 // and input parameters
 . . . /* similarly for returned parameters */
 for (element in actD.edge)
 createEdge(element); // create edges
 createPaths(actR); // create paths
 createTokenEngines(actR); // create TokenEngines
 if (actR.finalNode->select(oclIsTypeOf(ActivityFinal))-

>isEmpty()) actR.isFinal = False; // check for Final nodes
 actR.activate(); // activate the Activity
 return actR; }; // and return reference to this activity
The returned reference to the activity runtime instance is used
for further activity management.

C. Detailed View of create…() Methods
Each create..() method consists of several steps. At first,
relevant definition instances are obtained via definition
associations, then already existing runtime instances are got,
then for the current definition its runtime instance is created
and linked with existing runtime instances, and definition-
runtime associations are set. Due to size limitations, only the
body for createEdge(ObjectFlow edgeD) method is shown:
public void createEdge(ActivityEdge edgeD) {
 edgeR = Edge.addNew(); // create new runtime Edge
 if (edgeD.source.oclIsKindOf(ObjectNode))
 edgeR.source = edgeD.source.runtime;

// if source is ObjectNode, set proper OutputQueue
 if (edgeD.source.oclIsKindOf(ControlNode) and not

edgeD.source.oclIsTypeOf(InitialNode))
 edgeR.source = edgeD.source.runtime;
 // if source is ControlNode, set proper IntermediateNode
 if (edgeD.source.oclIsTypeOf(InitialNode))
 edgeR.source = edgeD.source.runtime.outputQueue;

// if source is InitialNode, set proper OutputQueue of the
runtime Initial node

 . . . /* similarly set associations for targets */
 edgeD.runtime = edgeR;
 // update runtime association for definition element
 edgeR.definition = edgeD; };
 // update definition association for runtime element

D. Path Construction
Each activity diagram is a directed graph, thus we can use
path with the same semantics as in the graph theory. In our
case a path is a "transitive closure" of Edges and
IntermediateNodes between Queues of StableNodes. This is
realized in the createPaths() method. In our approach all
constraints and conditions, coming from the relevant
ActivityEdge Guards and ControlNodes are "concatenated"
into the PassRule for each Path (e.g., order=approved AND
sum>100). If a path has Joins, its attribute hasJoin is set to
True, else it is False. The hasJoin attributes will be used for
attaching paths to appropriate token engines.

The following code shows, how paths are created for the
ADVM. The traditional “wave-front” algorithm for graph
processing is used:
public void createPaths(ActivityR actR) {
 for (snode in actR.stableNode) { // for each StableNode
 for (oque in snode.outputQueue) { // for each OutputQueue
 inodes[] = null; inodescond[] = null; // reset
 start = oque; // start for path
 edges[0] = start.outgoing; // get 1st outgoing edge
 for (i <= inodes.length) { // for unprocessed inodes
 for (edge in edges) { // for unprocessed edges
 guard = edge.guard.expression + " AND " +

inodescond[i - 1]; // concatenate conditions from edge
and outgoing inode (for brevity - empty element (or
outside array) is True)

 if (edge.target.oclIsTypeOf(InputQueue))
 // get target, if it is InputQueue,
 createPath(start, edge.target, isJoin, guard);

 // create new path
 else { // if it is intermediate node
 if (edge.targetNode.oclIsTypeOf(Join))
 isJoin = True; // if path has join
 // mark it, don't need more check for valid ADs
 inodes[j] = edge.targetNode;

 // store the next unprocessed inode
 inodescond[j] = guard; // store "preconditions"
 j++;}} // count next unprocessed inode
 edges = inodes[i].outgoing; // get edges from inode
 i++;}}}};// count next processed inode

E. TokenEngines Construction
The createTokenEngines() method creates TokenEngines for
queues in VM in the following way:

• if for an OutputQueue there exists at least one
outgoingPath with hasJoin=False, then a PushEngine
for this OutputQueue is created.

• if for an InputQueue there exists at least one
incomingPath with hasJoin=True, then a PullEngine
for this InputQueue is created.

The same restrictions for OutputQueue in OCL look the
following way:
context OutputQueue
inv: OutputQueue.output->exists(hasJoin=False)
 implies
 OutputQueue.engine->one(oclIsTypeOf(PushEngine)) and
 OutputQueue.pushEngine.path-

>exists(oclIsTypeOf(PushPath)) and
 OutputQueue.pushEngine.path-

>select(oclIsTypeOf(PullPath))->isEmpty()

The similar restrictions apply to InputQueues. The rules imply
the following consequences:

• PushEngines process only PushPaths, but
PullEngines – only PullPaths.

• Queues can be without TokenEngines and paths of a
Queue can be processed by several TokenEngines.

• Paths can have TokenEngines at both ends, but then
these paths are processed by only one TokenEngine
(either PushEngine or PullEngine).

 7

Construction of PushEngines is simple, because for them all
paths are independent (because of mutually exclusive guards
for edges). Creation of PullEngines is more complicated,
because for PullEngines additional conditions for path
joinCriteria are necessary. The following code shows, how
TokenEngines are created:
public void createTokenEngines(ActivityR actR) {
 for (snode in actR.stableNode) { // for each StableNode
 . . . /*create PushEngines, and continue with PullEngines */
 for (ique in snode.inputQueue) { // for each InputQueue
 for (path in ique.input) { // for each incoming Path
 if (path.isJoin == True) { // if some path has Joins
 if (ique.pullEngine.oclIsEmpty())
 engine=createTokenEngine(ique,"PullEngine");
 // create new PullEngine, if doesn’t exist yet
 engine.pullPath.addNew(path); }}

 // add PullPath to PullEngine
 createJoinCriteria(engine); }}}

 // create joinCriterion for PullPaths of this PullEngine

Fig. 5 shows significant cases, how token engines are created
and how they are linked to queues and paths. If a queue has an
engine, it is filled with color, and “Push” or “Pull” beside it
means the engine type. Paths, which are processed by an
engine, are shown in the engine’s color. If some edge is part of
several paths, it is replicated in several colors.

cb d

e

k

g

j

a

i

h

Push

Pull

f

Pull

Pull

Push

[a]

[b]

[c]

[b]

[a]

Fig. 5. Examples of activities with Queues, Paths, PushEngines and
PullEngines, and their relationship

F. Creation of Join Criteria for Pull Paths
As it was mentioned before, for PullPaths having a common
target an additional joinCriterion must be created. The
JoinCriterion has to check whether a group of supplied tokens
(one from each selected OutputQueue, in a subset of all
potentially available queues) can be jointly moved to the
InputQueue according to AD semantics. The JoinCriterion is
determined by PullPaths and their nodes, and the sequence of
nodes determines the structure of the expression. If paths have
a common Join node, then tokens from all incoming paths
should be joined (AND), if paths have a common Merge, then
token coming from any one path can be used (OR), and if
paths have a common Decision node, it can be ignored,
because it doesn't play a role in token joining. Thus the
JoinCriterion is a boolean expression, which is obtained by

going upstream from an InputQueue serviced by a PullEngine
and adding AND operation for a Join, with incoming edges as
its operands (similarly, OR for Merge), until we reach the
output queues, which play the role of elementary variables in
this expression. Certainly, only edges of PullPaths are used in
this process. It can be easily seen that the fan of incoming
PullPaths (presented in the natural way with common
segments overlapping), in fact, is equivalent to a tree form of
the corresponding JoinCriterion.
Guard conditions for edges have already been included into
passRules for paths, therefore only joinSpecifications of Join
nodes must be added to joinCriteria.
The createJoinCriteria(PullEngine) method creates
JoinCriterion for an engine. It uses the “wave-front” algorithm
(in a way similar to IV.D), but going upstream from the
PullEngine’s InputQueue, over all PullPaths. When the tree
form of the expression has been built, it is “translated” by
traditional methods into a textual prefix form (which is used
for evaluation on token sets during runtime). While there are a
lot of technical steps in all this, the general idea is simple
enough, so we do not provide more details of the method.
From an example in Fig. 6 the following expression is created:

OR(AND("p1.att2 = p2.att2", p1, p2), AND(p2, p3)) (1)

where OR is for the Merge node, and two ANDs are for Join
nodes. This is a “shorthand notation” for the expression, its
semantics is defined by rewriting it to a detailed OCL
constraint (also in the prefix form!):

or (and (tokens->select(locus=p1).att2 = tokens-
>select(locus=p2).att2, tokens->exists(locus=p1), tokens-
>exists(locus=p2)), and (tokens->exists(locus=p2), tokens-
>exists(locus=p3))) (2)

p2

a c
p3

p1.att2 = p2.att2

b

d

p1

[p2.att1=Flase][p2.att1=True]

Fig. 6. Examples for joinCriteria construction for PullPaths

Here p1, p2, p3 are names of output queues (pins), which in
this case represent the pin type. Use of pin names is
convenient, because normally each pin has a type in our
subset. Uniquely typed pins are used only for the example
simplicity, a similar expression could be built, using pin
names, but not types (unique pin names could be generated
automatically during the runtime creation, if types are not
unique within a “pull region”).
The expression (2) is set as PullEngine.joinCriteria.Expression
for the PullEngine of the action d. The use of JoinCriteria will
be described in details in section V.D.

 8

V. EXECUTION AND DETAILED SEMANTIC OF VIRTUAL
MACHINE CLASSES

Fig. 7 shows the metamodel of our ADVM. This diagram is
another view of the same metamodel, which was shown in

Fig. 3, but with more detailed runtime classes. It shows the
complete set of classes, associations and operations, which are
necessary for execution of ADVM. Runtime behavior of main
classes will be described in details in the following sections.

Initial

OutputQueue

TokenGroup

ActionBody
Body: String

Condition
expression: String
evaluate(Token[*]): Bool

PushPath
hasJoin: Bool = False

PullEngine
checkTokens(): Token[*]
canJoin(Token[*]): Bool

Path
hasJoin: Bool
canPass(Token): Bool

FlowFinal

ActivityFinal

Final
process(): Bool

ParameterR
direction: ParameterDirectionKind
value

Queue

IntermediateNode Edge

StableNode

TokenEngine
process(): Bool
putToken(InputQueue, Token)
delToken(OutputQueue, Token)
moveToken(Queue, Token)

Action
isSynchronous : Boolean = True
process(): Bool
delToken(InputQueue,Token)
execute(Object[*]): Bool
putToken(OutputQueue, Token)

InputQueue

{ordered}

PushEngineType

{subsets queue}

{subsets queue}

{subsets queue}

PullPath
hasJoin: Bool = True

ActivityR
activityID: long
isSingleExecution: Boolean = True
isActive: Bool
isFinal: Bool = True
activate()
process(): Bool
terminate()
invoke(Oject[*])
getParams()
setParams()

{subsets iNode}
JoinDecision

Merge

Fork

{subsets iNode}

{ordered}
Token

tokenID: long
value
delete()

{subsets queue}

 engine 1..*

initialNode *

 type

 *

 1

 action

 node

joinSpec
 1

 stableNode
 1..*

 queue
{ordered}

 1..*

 path

 1

 1..* actionBody 0..1

input
end

 *
 1

 type 1

 *

edge
{ordered}

 1..*
 edge

 *

guard 1

behavior
 0..1

 action
*

 tokenGroup
{ordered}

 1

 *

outputParameter *

 pullEngine

 inputQueue

 0..1

 1

input*

inputParameter *

 parameter

 *

output

 start

 *

 1 parameter0..1
 type 1

 passRule 1

joinCriteria
 1

input 1

 parameter
0..1

output*

 passedToken
{subsets token}

 *

iNode
{ordered}

 * iNode *

activity

 pullPath
 1..*

1

 join 1..*

 parameter *
 fork *

selectedToken
{subsets token}

 *

 token

 tokenGroup
 0..1

 * token

locus

*

0..1

outgoing

source

 1

0..1

incoming

target

 1

0..1

finalNode

 *

 pushPath
 1..*

 1
output 1

 pushEngine
 outputQueue

 0..1
 1

targetNode incoming 0..1 *
sourceNode outgoing 0..1 *

Fig. 7. Metamodel of the Activity Diagram Virtual Machine

A. Activity Starting
Activity activation is done through asynchronous invocation
of process() operations for all stable nodes and the activity,
and these processes are running while the isActive flag for the
activity is True. This operation is described using OCL:
context ActivityR::activate()
post:
 ActivityR.isActive = True and
-- activity is active and all process() methods are activated
 ActivityR.process() and
 ActivityR.stableNode->select(oclIsTypeOf(Action) Or

oclIsKindOf(Final))->forAll(n | n.process())

The invoke() operation starts an activity using actual input
arguments, which are passed by the caller (see V.E) and
returns actual output parameters from this activity. invoke()
works with generic data and knows nothing about tokens. We
assume here that actual and formal input parameters (and also
the relevant parameter nodes) are ordered the same way. The
method is described by a pseudocode:

public void invoke (Object[] data) {
 params = ActivityR.parameter->select(direction = "in");
 for (i < data.length) {
 params[i].value = data[i]; i++;}
 // set actual argument values in input parameters
 setParams(); // transfer passed parameters to activity nodes

 getParams(); // wait for results and get from activity nodes
 params = ActivityR.parameter->select(direction = "out");
 for (i < params.length) {
 data.addNew(params[i]);i++;}} // set output values at the
end of input data
The setParams() method passes activity input parameter
values as new data tokens in appropriate input Parameter
nodes. It is described by OCL:
context ActivityR::setParams()
post:
 let
 input : OrderedSet(ParameterR) = ActivityR.parameter-
>select(direction = "in"),
-- set of parameters
 cTokens : Set(Token) =
ActivityR.initialNode.output.token@pre,
-- existing control tokens in initial nodes
 dTokens : Set(Token) =
ActivityR.inputParameter.token@pre
-- existing data tokens in parameterNodes
 in
 if input->isEmpty() and ActivityR.initialNode->notEmpty()
then
-- if activity is invoked without params, use initial nodes
 ActivityR.initialNode->forall(n |
-- set tokens for all Initial nodes
 (n.output.token-cTokens).oclIsNew() and

 9

-- new Token is created in OutputQueue of Initial node
 (n.output.token-cTokens).oclIsTypeOf(Null))
-- and its type is Null (control token)
 else
 input->forAll(ip | ActivityR.inputParameter-
>select(parameter = ip).oclIsNew()) and
-- for each parameter, its parameterNode has new token
 (ActivityR.inputParameter.token-dTokens).value =
input.value -- values from parameters are set to data tokens,
both ordered sets must be equal - elements are equally ordered
 endif

getParams() method is similar to the setParams() method
with the only difference that it selects data tokens from
outputParameter nodes of the activity and places values into
output parameters, therefore it will not be described in detail.
The process() method for an activity is running, if the activity
has no final nodes. It works similarly as for a final node and
stops the activity when all its outputParameter nodes are filled
with tokens:
context ActivityR::process()
pre:
 ActivityR.isActive and ActivityR.isFinal = False and
-- activity is active and has no ActivityFinal nodes
 ActivityR.outputParameter->forAll(token->notEmpty())
-- and all outputParameter nodes are filled
post:
 ActivityR.isActive = False -- activity is finished
The terminate() method is necessary for termination of
subordinate activities. It terminates an activity without any
conditions.
context ActivityR::terminate()
post:
 ActivityR.isActive = False and -- activity is stopped and
 ActivityR.stableNode.queue.token->isEmpty();
-- all tokens are deleted

B. TokenEngines
TokenEngines are working continuously and they move
tokens from OutputQueues to InputQueues.
Each time when a new token appears, the evaluation of
canPass(Token) is performed for this token and all relevant
paths. For PullEngines additionally canJoin(Token[*]) is
reevaluated for all token subsets which can be formed from
those located in relevant OutputQueues.

C. Push Engine
For Push engines, each token can be processed apart from any
other token, and results depend on nothing more than the
token itself. If the token passes the passRule of at least one
PushPath, it is put on all the appropriate InputQueues
immediately and removed from the OutputQueue. Because our
model doesn't support global activity parameters, if a token
can pass no PushPaths, it doesn’t need to be checked again
and sticks in the OutputQueue forever, if there are no any
other paths and pull engines which can process this
OutputQueue.
The following OCL code shows work of the PushEngine:
context PushEngine::process()
pre:
 PushEngine.action.activity.isActive and -- Activity is active

 PushEngine.outputQueue.token->select(t |
t.locus.output.canPass(t))->notEmpty()
-- token is in OutputQueue, which can pass at least one Path
post:
 let prevToken : Token =
PushEngine.outputQueue.token@pre-
>select(token.locus.output.canPass(token))->first() in
 -- get 1st token from available
 let queues : Set(InputQueue) =
PushEngine.outputQueue.output-
>select(canPass(prevToken)).end in
 -- get set of InputQueues, for "passed Paths"
 let existTokens : Set(Token) = queues.token@pre in -- get
set of tokens, which were in available InputQueues before
 PushEngine.outputQueue.token->select(token =
prevToken)->isEmpty() and
 -- now this token doesn't exist in OutputQueue and
 (queues.token-existTokens)->forAll(t | t.oclIsNew()) and
 -- in available InputQueues are new tokens
 (queues.token-existTokens)->forAll(token.value =

prevToken.value)
 -- and each new token has the same value as previous

D. Pull Engine
PullEngines exhibit the complicated semantic of token
management. Similarly to the PushEngine, each token from
each OutputQueue should be validated against the passRule of
the relevant PullPath. If the token passes the passRule, it is
marked as passedToken and can be processed further. If the
token passes no passRule it doesn't need to be checked again
and will stick in the OutputQueue forever, if there are no any
other paths and engines which can process this OutputQueue.
In contrast with PushEngine, a PullEngine has more than one
OutputQueue and any token should be moved in dependence
from other tokens in respective OutputQueues.
Each time, when a new token appears in some OutputQueue,
the engine's process() operation checks this token using the
canPass() method for its PullPath, and, if the token passes, it
is added to passedToken list. Then the process() operation
invokes the checkTokens() method, which scans all subsets of
the passedTokens set and tests them against the relevant
JoinCriterion (by means of the canJoin() method, which
evaluates the criterion). As soon as a valid subset is found, it is
stored in the selectedToken list and the scan is terminated.
Then the process() operation joins the newly found set into the
InputQueue. Tokens are joined in the following way:

• If all tokens are control tokens, then one control
token is posted in the InputQueue.

• If some of the tokens are data tokens, then all data
tokens are posted in the InputQueue and they are
grouped in a new TokenGroup.

To explain better the general principles of PullEngine
behavior, the same operations are described in both ways –
using pseudocode and OCL expressions: The following
pseudocode shows the dynamic sequence of method
invocation for PullEngine:
public class PullEngine {
public process() {
 while (PullEngine.activity.isActive) {

 10

 if (PullEngine.inputQueue.input.start.token->exists(t |
t.oclIsNew())) { // if new token is in any OutputQueue
 thisToken = PullEngine.inputQueue.input.start.token-
>select(t | t.oclIsNew())->first(); // take it and
 if (PullEngine.PullPath.canPass(thisToken)) {

 // check it against passRule
 passedToken.addNew(thisToken);
 // if passed, update passedToken list
 if (checkTokens() <> Null) {
 if (selectedToken->forAll(type=Null)) {
 PullEngine.putToken(InputQueue,Null);

// if all are control tokens, create on control token
 (for token in selectedToken)
PullEngine.delToken(token.locus, token);}
 // and delete processed control tokens form OutputQueues
 else { // if data tokens
 (for token in selectedToken->select(type<>Null)) {
 group=TokenGroup.addNew();
 // create new token group
 PullEngine.moveToken(inputQueue, token);
 // move all data tokens to InputQueue
 token.group = group;}}}}}}
 // and add them to the same group

public Token[] checkTokens() {
 while (selectedToken.length > 0) {
// while a new subset of passedToken set exists
 selectedToken = nextComb(passedToken); // get next
 if (canJoin(selectedToken)) // and check for joinCriteria
 return selectedToken}} // if can join, return

public Boolean canJoin (Token[] selectedToken) {
 return PullEngine.joinCriteria.evaluate(selectedToken) {
 // uses PullEngine.joinCriteria.Expression and
selectedToken,
 }}} // and returns True or False

public class Condition {
public Boolean evaluate (Token[] tokens) {
// returns evaluation of expression, where tokens are
referenced as variables (by pin names)
 return eval(expression, tokens);}}

The following OCL expression shows the token movement
principles for PullEngine:
context PullEngine::process()
pre:
 PullEngine.action.activity.isActive and -- Activity is active
 PullEngine.checkTokens()->notEmpty()
 -- there are tokens which can be joined
post:
 let ique = PullEngine.inputQueue, -- engine's InputQueue
 prevTokens : OrderedSet(Token) =
PullEngine.checkTokens@pre (), -- processed tokens
 existTokens: OrderedSet(Token) =
PullEngine.inputQueue.token@pre, -- other existing tokens
 existGroups: OrderedSet(TokenGroup) =
PullEngine.inputQueue.tokenGroup@pre
-- other existing TokenGroups in InputQueue
 in

 (ique.input.start.token-prevTokens)->isEmpty() and
-- now these tokens are removed from OutputQueues
 if prevTokens->reject(oclIsTypeOf(Null))->notEmpty()
then -- if there were object tokens
 (ique.tokenGroup-existGroups).oclIsNew() and
 -- new tokenGroup is created
 (ique.token-existTokens)->forAll(t | t.oclIsNew()) and
 -- new object tokens exist in InputQueue
 (ique.token-existTokens) = prevTokens-

>reject(oclIsTypeOf(Null)) and
 -- with data from prevTokens (comparing as ordered sets)
 (ique.token-existTokens).tokenGroup = ique.tokenGroup-
existGroups -- and they are included in the same new group
 else -- if all were control tokens
 (ique.token-existTokens).oclIsNew() and
 -- one control token is created in the InputQueue
 (ique.token-existTokens).oclIsTypeOf(Null)
 endif

E. Action
Actions have processes running all the time (for checking
tokens in their InputQueues) and they consume tokens from
their InputQueues and provide tokens in OutputQueues.
Tokens are checked again, when a new token appears in any
InputQueue. An Action will only start execution, if all its
InputQueues are filled.
Tokens from InputQueues are consumed when all
InputQueues have at least one token (an Action works as an
implicit join). If a token has no TokenGroup, one token from
this InputQueue is consumed; else all tokens from this group
are consumed. The consumption means that the action engine
extracts data from data tokens and stores these data as the
actual argument list for invocation. Then it executes the
ActionBody using execute(Object[*]), if it is an opaque
behavior, or creates and invokes another activity using the
createActivity() and invoke(Object [*]) operations. If
isSynchronous = True, the action waits for output, and the
actual results are placed as data tokens into OutputQueues.
Else, control tokens are placed into OutputQueues
immediately after the execution/invocation. The following
pseudocode shows the behavior of the action:
public class Action {
public process() {
 while (Action.activity.isActive) { // activity is active
 if (Action.input->forAll(token->notEmpty())) {

// -- for each InputQueue exists a token
 for (token in Action.input) {
 if (token.tokenGroup->notEmpty()) {//if tokens are
grouped in a group
 for (gtoken in token.tokenGroup) // get them from the
group
 intokens.addNew(gtoken); // store them in a list
 else intokens.addNew(token); // else get only this token
 indata = intokens->select(type<>Null).value; // get data
from all data tokens
 if (Action.isSynchronous = True) { // if synchronous
 if (Action.behavior->notEmpty()) { // if it invokes
another activity
 activity =
(ActivityFactory.createActivity(Action.behavior));

 11

 // create the activity runtime
 activity.invoke(indata); // invoke the activity
/* we assume order of pins conform to order of parameters */
 outdata = activity.parameter->select(direction =
"out").value;} // get returned arguments, which are stored in
output parameters
 else { // if it is opaque behavior
 action.execute(indata) // execute it
 outdata = Action.ActionBody.parameters-
>select(direction = "out").value;} // and get returned
arguments
 for (i < outdata.len) {
 token.addNew(locus = Action.output[i], type =
outdata.type, value = outdata);}};
// set tokens in OutputQueues with right type and value
 else { // if invocation is asynchronous
 if (Action.behavior->notEmpty()) // if refers to activity
(AcytivityFactory.createActivity(Action.behavior)).invoke(in
data); // invoke it asynchronously
 else action.execute(indata); // or action asynchronously
 for (output in Action.output) // put control tokens
 putToken(output,Null);}}}}}} // in all OutputQueues

F. Activity Finishing
Final nodes also have running processes, which process
tokens. FinalNodes simply delete tokens from their
inputQueues:
context FlowFinal::process()
pre:
 FlowFinal.activity.isActive and -- Activity is active and
 FlowFinal.input.token->notEmpty() -- at least one token is in
input queue
post:
 FlowFinal.input.token->isEmpty() -- this token is deleted

If a token reaches an ActivityFinal node, all tokens, excluding
those which are in output parameters of the activity are deleted
and all actions are stopped; invoked activities are stopped and
their tokens are deleted without any conditions.
public process() {
 while (ActivityFinal.activity.isActive) { // activity is active
 if (ActivityFinal.input.token->notEmpty()) {
 ActivityFinal.activity.isActive = False; // stop activity
 for (token in (stableNode.queue -
ActivityFinal.activity.outputParameter).token)
 token.delete(); // delete tokens except in outputParameter
nodes
 activities[0] = ActivityFinal.activity;

// get first activity
 for (i <=activities.length) { // for each invoked activity
 action = activities[i].action; // get action in next activity
 for (action in actions)
 if (action.behavior->notEmpty()) // if action invoked

another activity
 activities.addNew(action.behavior); // add it to list
 activities[i].terminate; // terminate current activity
 i++; }}// go to next activity

As it was mentioned before in section V.A, if the activity has
no final nodes, it can also be finished, when all its
outputParameter nodes are filled.

VI. PROOF OF ADVM EQUIVALENCE
In this section we provide a semiformal proof of the
equivalence of the original semantics (ADVM) of UML
activity diagrams [1] with the one provided in this paper. We
remind that the original semantics is based on token offering
(visibility), control nodes acting as distributed switches and
actions pulling tokens “all at once” (see III A).
We assert that the essential event trace – starts of action
executions and the token sets consumed and produced by these
actions are the same for both virtual machines on any
activity diagram in the subset described in section II. The
events in this event trace occur in the same order and in the
same time moments. Moreover, each individual token
traverses the same path according to both machines, but the
ordering of these token movements in time may differ. In
general, in our VM tokens will reach their destinations earlier
than in the original VM.
At first, we will show that there is no real race for tokens by
actions in the selected subset. More precisely, no token can be
potentially delivered via several alternative paths by several
token engines. Certainly, such conditions cannot appear for
push paths – because using push engines we deliver each
token along all of the paths from an output queue, where
guards permit. These could be only pull paths where (forward)
branch points occur (merge points backward from the pull
engine prospective).
We prove that no token in an output queue may be serviced by
(be in the valid token set for) more than one pull engine (but
the same output queue may be).
Let us analyze where the (forward) branch points in a path
may occur:
• If multiple edges leave the same action or object node

(implicit fork). In our subset it is not allowed, each
output pin has exactly one outgoing edge and each edge
leaving an action starts from an output pin. Object nodes
and central buffer nodes, which allow competing outgoing
edges, are not included in our subset.

• When a fork appears in some path. But there may be no
forks in a path leading to a pull engine in our subset
(because there must be an explicit join in a pull path).

• When Decision allows a token to traverse through several
edges. In our subset any token can traverse only one edge
(because of mutually exclusive guards, only one guard is
true). So, though several pull engines may have a
common source (output queue), for each token only one
path is enabled – that where the guards on the path to it
are true.

It has to be proven also, that there may be no races between
push and pull paths. In other words, if a token is delivered by
one or more push paths (and then removed from the source
queue), it may not be “useful” for a pull path starting from the
same queue. Indeed, it is so because the passRule may be true
for only one path, if this path contains no forks, and pull paths
do contain no forks. Similarly, if a token is “pulled” by a pull
path, it is “of no interest” for any push path. Thus, our subset
is race free.
Hence follows that each token can be delivered to only one
destination (or several ones for push paths). The two
preceding sections where our VM was described in detail

 12

actually provide an assurance that this target is the same as in
the original activity diagram semantics.
Since or VM delivers tokens along push paths as soon they
appear in an output queue, and each pull engine independently
pulls a token (or a group of tokens) into its input pin as soon
as they are available on relevant outputs, in general any token
will be delivered to its destination in our VM not later than in
the original VM. In fact, frequently it will be earlier, since the
original VM always transports a group of tokens into all input
pins of an action simultaneously.
It remains to show that our simplified action engine which
takes tokens or groups of tokens directly from input pins,
cannot be activated earlier than the original one which takes
the tokens from output pins. Our rule asserting that all input
pins must have at least one token (or an appropriate group of
tokens, if this is a “join pin”) for the action to start assures that
actually it is exactly the same situation where the original VM
would have finally collected all the offered tokens, which are
required for the start of the action. The original principle of
offering tokens via an edge downstream (as it was already
noted in section III) actually means that tokens are made
visible to the outgoing edge of a control node. Since finally
this visibility is required for all input pins of the action, the
moment for this action to fire is when the last token becomes
available in the corresponding output pin. But it is exactly the
same moment when our corresponding token engine (push or
pull) would fill the last required input pin, and in the same
moment our action engine would fire too.
This completes the proof of equivalence.

VII. CONCLUSION

A. Extensions and Practical Usage
The subset of the UML activity diagrams has been chosen to
cover the basic needs for business process management and
workflow systems. The goal was to show that AD notation can
be given a precise enough "natural" semantics, so that a
workflow engine can be based on it. From the graphical syntax
point of view, according to [2] AD is an acceptable and at the
same time well-known notation for the workflow definition.
Another usage of ADVM could be for an AD simulator – a
tool important for workflow validation.
Certainly, some elements from the Complete (or even
Complete structured) level are of high value for workflow
definitions. Many of these features actually could be dealt
with by the methodology proposed in this paper. Events and
even interruptible regions could be treated much the same
way. A more serious problem is the use of context attribute
values in guards. Treating them as specified in [1] would lead
to a continuous recheck, when a token is offered to an edge,
but rejected by the guard. A solution is to assume that guards
are evaluated for the current "snapshot" of the context and any
context changes are modeled as explicit events. This solution
could be easily implemented in our ADVM.
A technical issue is the exhaustive search (among all token
subsets) for joinCriteria, which was used only for the
simplicity of description, for real systems it can be made
efficient by converting a join criterion to disjunctive normal
form (DNF) and checking only tokens in each AND-term. A

CentralBuffer (DataStore) with one outgoing edge can be
included as another type of StableNodes without model
changes. If several outgoing edges and concurrency is
necessary, a more complicated approach is required, but this
case is not typical for workflow definitions.

REFERENCES
[1] Object Management Group (OMG), Unified Modeling Language:

Superstructure, version 2.0, 2004, http://www.omg.org/cgi-
bin/doc?ptc/2004-10-02

[2] Stephen A. White, Process Modeling Notations and Workflow Patterns,
March, 2004, http://www.omg.org/bp-corner/pmn.htm

[3] Object Management Group (OMG), UML 2.0 OCL Specification, 2004,
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

[4] Rik Eshuis, Roel Wieringa, Comparing Petri Net and Activity Diagram
Variants for Workfow Modelling – A Quest for Reactive Petri Nets,
2003, http://is.tm.tue.nl/staff/heshuis/pnt.pdf

[5] Harald Störrle, Jan Hendrik Hausmann, Towards a Formal Semantics of
UML 2.0 Activities, 2004, http://www.pst.informatik.uni-
muenchen.de/~stoerrle/V/AD-11-Limits.pdf

[6] Harald Störrle, Semantics and Verification of Data Flow in UML 2.0
Activities, 2004,http://www.pst.informatik.uni-
muenchen.de/~stoerrle/V/AD2b-DataFlow.pdf

[7] Rational Software Architect, http://www-
306.ibm.com/software/awdtools/architect/swarchitect/

[8] Conrad Bock, “UML 2 Activity and Action Models Part 4: Object
Nodes”, in Journal of Object Technology, vol. 3, no. 1, pp. 27-41.
http://www.jot.fm/issues/issue_2004_01/column3

[9] Conrad Bock, “UML 2 Activity and Action Models Part 2: Actions”, in
Journal of Object Technology, vol. 2, no. 5, pp. 41-56.
http://www.jot.fm/issues/issue_2003_09/column4

[10] A.Kalnins, J. Barzdins, E.Celms. Efficiency Problems in MOLA
Implementation. 19th International Conference, OOPSLA’2004,
Vancouver, Canada, October 2004
http://melnais.mii.lu.lv/audris/OOPSLA_MOLA.pdf

[11] QVT-Merge Group. MOF 2.0 QVT RFP, Revised submission, version
1.0. OMG Document, ad/2004-04-01, http://www.omg.org/cgi-
bin/doc?ad/2004-04-01

