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Abstract. The paper is devoted to metamodel-based graphical tool building platforms, the main applica-
bility area of which would be the development of DSL editors. In the beginning, a brief analysis of the
well-known static-mapping-based approach is given and situations when it is insufficient are pointed out.
Then, in the main part, a new, more flexible approach based on model transformations is proposed, where
the correspondence between the domain metamodel and the presentation metamodel is defined by trans-
formations in an appropriate transformation language (MOLA). The paper presents a newly developed
Eclipse plugin METAclipse, which defines the presentation metamodel consisting of several parts, the
most important of which is the graph diagram metamodel. METAclipse provides engines driven by these
metamodels, which are incorporated in a very simple architecture allowing easy use of transformations.
METAclipse has proven its flexibility and efficiency in the development of a new generation graphical
editor for MOLA itself.
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1 Introduction

Due to the advent of the MDA approach and the growing popularity of various domain-specific
languages (DSLs), various graphical tool building environments have gained continuously increas-
ing attention in recent years. The first simple generic metamodel-based tool environments, such as
MetaEdit [1], Kogge [2] and early versions of Dome [3] and GME [34], appeared already in the
mid-nineties, but their capabilities were quite limited.

The second generation of such metamodel-based environments with much wider possibilities,
such as MetaEdit+ [4], GME [5], and ATOM3 [6], appeared around 2000 (the first version of
MetaEdit+ actually appeared much earlier [35]). They already had domain metamodelling facilities
close to MOF [7] and more advanced graphical capabilities. Therefore the popular tool paradigm of
a visual language being based on a presentation-independent domain (as it is e.g., for UML[16])
could be supported. But the presentation metamodel (the description of graphical elements) still had
to be close to the domain metamodel, only relatively simple mappings between them were permit-
ted, and everything else had to be defined by OOPL code (e.g., C++ in GME). The previous tool
framework by UL IMCS, the Generic Modeling Tool environment [8], also belongs to this cate-
gory.

A completely new generation of tool frameworks has emerged in recent years as a response to the
need by MDA community to make DSLs an everyday software development practice. One such
group of environments is based on the open-source Eclipse platform. Eclipse, together with its EMF
plugin [9], is a broadly used metamodelling environment, close to MOF. In addition, the GEF
plugin [10] is a basic “diagram drawing engine.” Only something linking the two was required for a
complete tool building environment. The first and most popular solution for this is the static meta-
model mapping-based GMF platform [11], which is analyzed more closely in section 3. Alternative
solutions are provided by Pounamu/Marama [23] environment and the coming GEMS project [30].

A popular alternative to Eclipse on a commercial basis is offered by Microsoft DSL Tools [24] in
Visual Studio 2005, however the logical capabilities there are quite close to GMF. The already
mentioned MetaEdit+ [4] has significantly evolved and also become a key player in this area.
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The abovementioned solutions are quite appropriate for simple cases, where the domain and pres-
entation metamodels are close and no complicated mapping logic is required. However, DSL sup-
port frequently requires much more complicated and flexible mapping logic. Therefore a new ap-
proach has appeared: to define this mapping by model transformation languages. Model mappings
in tools actually lie very close to traditional MDA tasks, for which model transformation languages
were invented. Therefore they can be treated as very appropriate DSLs for metamodel-based tool
building, yielding development efficiency that is an order of magnitude higher when compared to
that of OOPL.

The first frameworks using this approach to a degree are the Tiger project [12] and the
ViatraDSM framework [31]. Both are based on Eclipse and use GEF as a drawing engine. The Ti-
ger project is based on the graph transformation language AGG [13]. However, a specific domain
modeling notation is used there which forces the domain metamodel of a language still to be close
to the presentation metamodel. Standard editing actions (create, delete, etc.) are specified by graph
transformations which act on the domain model, and the presentation model is updated accordingly.
The ViatraDSM framework is based on the Viatra2 transformation language [32]. There also the
domain metamodel must be close to the presentation one, but a larger freedom is allowed, and the
transformation approach to a degree can be combined with the static mapping approach. There are
also plans to use Fujaba [33] transformation language in the MOFLON framework [36].

The next section provides a more detailed discussion on the two approaches to tool frameworks
and their respective merits.

In this paper the METAclipse plugin for Eclipse is proposed, which is a completely transforma-
tion based tool framework. There are no restrictions on the correspondence between the domain and
presentation metamodels. The mappings are defined dynamically by transformations in the model
transformation language MOLA [14]. The implementation of METAclipse reuses the basic Eclipse
components such as EMF and GEF, as well as parts of GMF runtime [25]. The main distinguishing
feature of METAclipse is an appropriately built presentation metamodel, which is discussed in
some detail in section 5. It enables a clear separation of responsibilities between the METAclipse
presentation engine, which handles all the low-level presentation and layout-related tasks (all GEF-
level concepts are hidden), and transformations, which create and maintain only the domain and the
logical structure of presentation. METAclipse contains also a universal metamodel-based presenta-
tion engine for element property editing, and an advanced project tree engine. The logical behavior
of property dialogs and model tree also is controlled by appropriate transformations, thus transfor-
mations control the complete tool behavior. The METAclipse engines are discussed in section 6.
The usability of the approach is ensured by the fact that a significant part of the transformations are
domain-independent and are built only once, as part of the framework itself. This possibility is en-
sured by the scaffolding part of the metamodel (see details in section 7). The paper concludes with
some experience of using METAclipse.

2 Visual DSLs and two paradigms for tool building frameworks

2.1 General principles of paradigms

A visual language basically consists of two parts — the domain part and the presentation (visual)
part. Sometimes they are called also the abstract and concrete syntax respectively - the terminology
taken from textual languages. For visual languages the mostly used syntax specification technique is
metamodels. Sometimes graph grammars are used too (this possibility will not be analyzed here).
The domain part of the language is defined by means of the domain metamodel, where the rele-
vant language concepts and their relationships are formalized. The domain metamodel is used also
for precise definition of language semantics. Typically standard MOF [7] is used for the definition
of domain metamodel. Some frameworks [4,12,24,31] use a slightly alternative notation for domain
metamodels, where those metamodel classes, which correspond to edges in diagrams, are singled



out and called relationships (actually they are equivalent to UML association classes, which for-
mally are not part of MOF). A note on terminology should be added here. Though according to
general modeling principles the language domain is defined by its metamodel, several frameworks,
including GMF and MS DSL, call the definition the domain model.

For the presentation part (concrete syntax) there is no universally accepted notation. The same
metamodelling techniques typically is used, but with various semantics. During the definition of the
presentation part both GMF and MS DSL use a presentation metamodel. Instances of classes in this
metamodel are #ypes of diagram elements to be used in the diagram (e.g., ClassNode, Associa-
tionEdge). A concrete set of graphical element types for a diagram definition is called the presenta-
tion (or graphics) model. During runtime GMF uses another metamodel (notation metamodel),
where instances are specific graphic elements in a diagram (nodes, edges, etc.).

Most of the abovementioned frameworks, including GMF and MS DSL, use a static-mapping-
based approach for definition the desired correspondence between the domain and presentation
models. During the tool design this mapping assigns a presentation model element (a node type,
edge type or label type) to a domain model element, by means of which the latter one must be visu-
alized. Typically, a given node type is assigned to a domain model class and a given edge type to an
association (or relationship). This means that all instances of the class will be visualized by the
given node type. Just because of this fact it is fair to call the mapping static. The element structuring
(what is within what, what can be connected to what, etc.) is also specified by these mappings.
Thus, the complete graphical tool functionality is basically defined by this mapping (certainly, there
is more - property dialogs, model browser etc, but we omit all this for a moment). The mapping
may be complemented by some use of constraints (OCL [15] in GMF, custom languages in MS
DSL and MetaEdit+), and this offers a limited flexibility to mappings. However, for example, you
cannot visualize the same domain class sometimes as a node and sometimes as an edge.

Most of the frameworks (GMF, MS DSL, ) use the generation step, by means of which language
classes are generated in the corresponding OOPL (Java, C#,...) from the involved models. The gen-
erated language classes implement the required functionality (certainly, also by inheriting from
various "generic" classes). If the generated functionality is insufficient, the language code can be
extended manually. Actually, static mapping may be used without the generation step too - exam-
ples are MetaEdit+ [26] and Generic Modeling Tool, which are model interpreters.

An alternative to the static mapping approach is the model transformation based approach, which
is the main topic of this paper. According to this approach the correspondence between the domain
and presentation models is defined dynamically by means of model transformations in an appropri-
ate model transformation language. These transformations define what modifications must be done
in one of the models, if the other changes (due to user actions or other internal activities). The syn-
chronization may go both ways. The main difference to the static mapping approach is that trans-
formations may implement any kind of data-based correspondence between domain and presenta-
tion instances. It should be noted that the transformation approach requires a different model-
metamodel terminology (transformations always process models defined by metamodels). There-
fore in the transformation approach by domain model we must understand a concrete set of runtime
instances, and by presentation model a diagram (or several diagrams) representing this set visually.
The definitions always are metamodels.

We conclude the section with some more comments on metamodeling. The defined domain meta-
model always is at the layer M2 according to the MOF hierarchy (it is defined according to MOF it-
self, which is at M3). A concrete domain model (a runtime model in a tool) is at M1. However, in
the static mapping approach the presentation definition metamodel is at M2 within the MOF hierar-
chy (it is not MOF itself, but a specific metamodel); the defined presentation model (which contains
the diagram element types) is at M 1. The runtime presentation model (also at M1) is not an instance
of this definition model. This MOF layer mismatch is not a problem for the generation approach.
There only one metamodel/model layer is used (metamodels for definition, corresponding models
for generation of language classes). However, the transformation approach (for all transformation
languages) requires a symmetric situation at both domain and presentation. Therefore the presenta-



tion definition metamodels from GMF, MS DSL or other frameworks cannot directly be used for
transformations.

2.2 Areas of applicability

Here a brief discussion on DSLs is presented, in order to find out in what situations which of the
approaches is superior.

Most of "engineering" DSLs (for telecommunications, process control, automotive industry etc)
are quite simple from the point of view we are discussing now. There are typically no metamodel-
ling standards in these domains, and domain metamodels can be simply extracted from graphical
notations existing in practice. These are the typical DSL examples used in framework tutorials (see,
e.g. [37]). There the mapping is very straightforward - domain classes map to nodes, associations to
edges, class attributes to labels and so on. Certainly, their execution semantics is complicated, but
this is another dimension. Static mapping based frameworks are an appropriate solution for this
area. However, it should be noted at once that mapping based solutions are so easy only in the case
when there is such a straightforward correspondence between the domain and presentation models.
If some code is to be added manually, a deep knowledge of the generated code and various APIs of
the framework itself are required, especially it is true in the case of GMF.

DSLs in software engineering area typically are more complicated in the aspect we are interested
in. This is because of several reasons. Frequently there are domain metamodel standards for the
given language, which are used for the formal semantics definition and are very far from the con-
cepts directly used for the graphical presentation of the language. In addition, the interdependency
between language elements is significantly more complicated, including dependencies between
elements visualized in different diagram types. A typical desire for language tools there is that edit-
ing should be syntax directed - only valid language diagrams should be allowed, as far as possible.
All these factors make the mapping between domain and presentation elements quite complicated,
frequently many-to-many and data dependent. For example, a value of a domain class attribute may
determine what other domain classes should also contribute to the same presentation element. All
this makes the static mapping approach significantly less efficient, while all these situations pose no
problems for the transformation approach. Let us give some examples.

The first such language class could be model transformation languages, more precisely, the
graphical ones. They include the OMG standard MOF QVT [21], the MOLA language [14] used in
this paper, Fujaba language [33] and some others.

Let us analyze a small excerpt from the MOF QVT Relations Language [21], for which the OMG
standard proposes a domain metamodel, and both graphical and textual concrete syntax. The pro-
posed domain metamodel is indeed quite far from the graphical form of the language. For example,
an instance of the domain metamodel class ObjectTemplateExp (see [21], page 30) must be
mapped to a pattern element (a rectangle, something like a class instance in UML). This domain in-
stance may contain several instances of PropertyTemplateItem. Each contained instance
must be mapped either to a slot in the element (a label within a compartment in GMF terminology)
when the value link in the domain points to a proper OCL expression, or to a link (edge) to an-
other pattern element (when the value link points to another ObjectTemplateExp). Another
complicated issue here is building of label texts, which are composed from several domain classes
and the composition is data-dependent.

It should be clear that the described correspondence between domain and graphical presentation
cannot be described by a static mapping of any kind. This is not the only example of this kind in
MOF QVT. If we tried to define this correspondence in GMF, this would mean vast programming
in pure Java (with just some generated classes to be reused). On the other hand, by means of model
transformations such a correspondence may be described quite easily. It should be noted, that cur-
rently there is no proper graphical tool for the relational MOF QVT.

The situation with MOLA language [14] (the basic language used in our approach) is similar,
though the domain metamodel there is closer to the graphical presentation. However, the require-



ment that the graphical tool must be syntax directed (and support a lot of context-sensitive syntax
constraints during diagram building) requires that the domain metamodel must be "semantic" to a
great degree. Therefore the correspondence between domain and presentation is complicated in
MOLA too. For example, each pattern element in MOLA domain (a concept similar to that in MOF
QVT) has only one of several possible paths in a model to the corresponding class, the existing path
must be found to display the class name as a label in the corresponding node. The composition of
label texts is as complicated as in MOF QVT. A specific issue in MOLA tool (more related to prop-
erty editing than mapping to presentation) is the requirement to offer only relevant associations for
building a pattern link. To find the relevant list, a transitive closure of inherited associations in a
class diagram must be computed. There are other such complicated situations for property editors in
MOLA too. All the mentioned would make the implementation of MOLA tool by means of static
mappings quite complicated. At the same time, this paper shows in section 8 that a MOLA tool sat-
isfying all requirements has been built by reasonable efforts using the transformation approach.

One more example from a completely different area would be a tool which would visualize an
RDF [19] data base as a simple class diagram, with update support too. This task has become popu-
lar in the context of ontology development. The domain model implied by typical RDF data bases
[29] is a simplified metamodel for RDF triples [20]. To visualize RDF data as a class diagram (con-
taining also instances) in a natural way, a complicated analysis of attribute values (of String type)
for some RDF domain classes must be done. Only this way it may be decided whether an RDF
property should be visualized as an attribute or association. Such a tool is apparently easier to be
implemented by the transformation approach.

3 Reuse of GMF Elements in MET Aclipse

As it was already noted, GMF (Graphical Modeling Framework) is the most popular metamodel-
based graphical tool building platform for Eclipse. GMF utilizes Eclipse EMF (Eclipse Modeling
Framework) and GEF (Graphical Editing Framework) technologies. EMF is used for model man-
agement and GEF for graphical user interface.

GMF uses a static-mapping-based approach. It defines a set of metamodels: graphical (presenta-
tion), tooling and mapping metamodels. In addition, it uses ECore as the domain metamodel (in
GMF terminology, it is meta-metamodel according to MOF). Graphical metamodel defines the
graphical element types. Tooling metamodel defines the palette and menus. The mapping meta-
model defines the mapping possibilities between the models. This mapping has restrictions - for ex-
ample, nodes can be mapped only to EClasses (i.e., domain classes) and links to EStructuralFea-
tures (in fact, associations).

To build an editor in GMF, domain, graphical, tooling and mapping models are defined, then the
generation is performed and manual code in Java added.

As it was already noted at the end of section 2.1, the graphical (presentation) metamodel is well
adapted to the generation step in GMF, but cannot be used directly by the transformation approach.
The same situation is with the tooling metamodel. Therefore actually nothing of the GMF definition
part can be reused in the proposed METAclipse approach. As a consequence, there are no explicit
graphical element types to be used by transformations (see section 5 for the METAclipse solution).

Fortunately, the GMF runtime [25] uses another metamodel - the notation metamodel. This
metamodel describes graphical instances in the runtime - nodes, edges, compartments and labels
(exactly, the layer required by transformations to build graphical objects dynamically). In fact, the
GMF runtime is a graphical engine for Eclipse, significantly extending GEF in the direction re-
quired for diagram building.

METAclipse graph-diagram engine partially reuses components of the GMF runtime. The presen-
tation metamodel in METAclipse is also partially based on GMF notation metamodel, only the
metamodel elements are made more "transformation-ready". DSL tools also require rich possibili-
ties for displaying domain elements in the project tree. In addition, editing of properties of domain



elements frequently is a semantically complicated operation, especially, the building of the most
adequate lists to be prompted. GMF does not provide much support in this area. METAclipse, on
the other hand, adds an extensive control over these editor parts and provides original components
addressing these issues (see section 6 for more details).

4 Model-Transformation-Based Approach

In this paper we propose a completely transformation based approach to tool building, implemented
in the METAclipse framework. The correspondence between domain and presentation models there
is defined dynamically by transformations in a model-transformation language.

At the instance level this correspondence must be stored in the model - by means of mapping
links, and these links are built and used by the transformations. Our experience shows that trans-
formation building is significantly eased by the existence of such links.

Let us assume that a domain is given for which we need to build a tool, e.g., the Class domain in
UML2. In METAclipse the domain metamodel is specified as an EMOF-compliant (Essential
MOF, see [7]) UML model (similarly to the ECore model in GMF). The presentation metamodel is
predefined in METAclipse (an equivalent to the notation metamodel in GMF). It describes the
available graphical elements in a diagram: nodes, edges, text labels, and other elements. More pre-
cisely, an instance of this metamodel is a runtime graphical model, which is visualized and serviced
by the METAclipse presentation engine. Transformations build instances of the presentation classes
and connect them by mapping links to the corresponding domain instances. The presentation engine
visualizes these presentation instances and, in addition, notifies transformations when the user has
performed some action. A high-level graphical model transformation language MOLA [14] is used
in METAclipse for building the required transformations, but in principle other such transformation
languages could be used too, e.g., MOF QVT. There is no generation step in METAclipse (cer-
tainly, MOLA transformations must be compiled to an executable form).

Fig. 1 shows the most interesting part of our presentation metamodel. In fact, the complete
metamodel of the world transformations have to work in consists of the predefined presentation
metamodel (of which a small fragment is given in Fig. 1) and the required domain metamodel (of
which only the Element class is visible). For UML-related domains (such as the above mentioned
Class domain) and many other it is typical that there is a common ancestor for all domain classes (in
UML it is Element in the Kernel package). The association domain—present here serves as
a generic mapping link between domain and presentation.
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Fig. 1. Graph diagram metamodel



To implement the abovementioned schema, a transformation procedure must be built for each
kind of diagram element (node, edge, or sub-diagram) representing an essential domain element.
For example, such procedure has to be created for a class node (representing a domain Class). In
particular, this transformation builds a new class node (an instance of CompositeNode) when a
Class instance in the domain is to be shown in a class diagram.

Though building the transformation procedure for each diagram element may initially seem to re-
quire much more effort than just defining a static mapping in GMF, the job is actually quite easy in
an appropriate transformation language. It should be reminded here that for DSLs we are interested
in nearly each static mapping in GMF would need to be complemented by a relevant piece of Java
code after the generation step. The transformation procedure can also collect in a cohesive block the
various constraints relevant to a diagram element. These constraints become much more readable in
MOLA than they would be in a mix of OCL and Java. The main gain, however, is flexibility.

Besides the domain-determined specific functionality for each diagram element, a lot of function-
ality in a tool (setting an element style, displaying menu items, moving an element etc.) is actually
common to all elements, and therefore needs to be built only once, as part of the framework. The
presentation engines in METAclipse perform all generic presentation and graphics-related jobs,
such as moving an element. In order to maximize this common part in transformations, the presen-
tation metamodel must be used in an appropriate way, especially the “scaffolding part” of it.

The next sections present the basic details of METAclipse implementation.

5 Structure of METAclipse Presentation Metamodel

As it was already pointed out, the METAclipse framework contains a domain-independent presenta-
tion metamodel. This metamodel serves as a contract between the presentation engines and the
transformations, clearly separating the duties of each. The presentation metamodel in METAclipse
consists of several logical parts, defined as packages. The graphDiagram package, whose most
essential part was shown in Fig. 1, defines the available diagram element kinds in METAclipse. The
diagram presentation engine, which will be described in some detail in the next section, visualizes
any valid instance of that metamodel.

Another part of the metamodel, also closely related to presentation engines, is the commands
part, shown in Fig. 2. The Command class represents a request generated by a presentation engine
to be serviced by a transformation. A command is a direct result of some tool user action, which is
not “purely visual” (layout-related) and therefore requires a transformation for its execution. The
context in which the command is to be executed is specified by appropriate links. The metamodel in
Fig. 2 shows the basic commands related to graph diagrams. Create commands are generated by the
engine when the user selects a palette element and clicks on the diagram. It is up to transformations
to decide whether the user request is semantically valid. It should be noted that the command con-
cept in METAclipse is at a higher level of abstraction than a similar concept in GMF and therefore
easier for implementation by transformations.

Another command in the fragment is select, in response to which a transformation must build the
appropriate property dialog (to be visualized by property presentation engine).

The palette and menu parts of the metamodel (and actually also a certain fraction of the property
dialog) have the special feature that their instances do not change during the tool action: they are in
fact part of a specific tool definition.
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Fig. 2. Command part of the presentation metamodel

In order to simplify the transformation building in METAclipse and imitate the “static mapping
paradigm” of GMF as far as possible, there is another static part in the predefined metamodel,
which is used by the transformations only: the scaffolding part. This part is used to define the struc-
ture of a specific diagram (e.g., a UML class diagram) in a static way, and to “hook up” by links on
this “static frame” all static parts of the metamodel, such as palette and menus. Fig. 3 shows that
“static” part of the metamodel and some of its links to the other (“non-static”’) component. The scaf-
folding consists of two subparts. One is the diagram structure definition by means of instances of
DiagramType, NodeType, EdgeType etc., which constrain what types may be inside/under
other types in a valid diagram. This structure definition is a semantic equivalent to the static presen-
tation definition in GMF, but in a form transformations can benefit from. The other part is style
definitions, which specify the graphical styles for diagram elements.

Instances of the static part are built only once, at the start of a new project. The role of scaffold-
ings for building transformations will be conveyed in some detail in section 7.
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When a tool is to be defined by means of the METAclipse framework, a concrete domain meta-
model is to be added to the predefined (presentation) metamodel and some mapping associations
must link the domain to the presentation part (the most important is the one depicted in Fig. 1).
Then the domain specific MOLA transformation procedures can be added to the fixed set of the
transformations that are part of the MET Aclipse itself.

6 METAclipse Presentation Engines

The overall architecture of METAclipse is very simple. METAclipse consists of several parts, each
of which represents a separate engine and “understands” part of the metamodel discussed in the
previous section (“knows” how to interpret the models of this metamodel). The processing loop of
every event in each METAclipse presentation engine can be seen in Fig. 4. It also depicts the main
parts of METAclipse; besides presentation engines they are MOLA transformations and model re-
pository. The repository is the central model storage and is required for transformations to run.
Transformations are compiled procedures of the MOLA transformation language, which uses re-
pository API to perform model changes.

First, after any event has been triggered (new node added to diagram, context menu called, selec-
tion changed, etc.), the corresponding command is written to the repository, describing the logical
event that has happened. The command represents a semantic event, one of these defined in the
presentation metamodel (see section 5).

Next, the transformation is called, which then performs the necessary model transformation for
the command written in repository. Transformation can change both domain and presentation mod-
els. After the execution of the transformation, engines examine the model changes and the changed
model elements are once again read from the repository. All changes to visual model elements lead
to changes in user interface.

Eclipse
1
. . \"

u Presentation Engines Java

A

1. Writes the Command 4. Reads the Result 2. Calls the Transformation
A y
Repository « MOLA Transformations

3. Performs the Model Transformation

Fig. 4. High-level view of the METAclipse architecture

This simple event processing loop is used consistently over all presentation engines and this
HTTP-get-like request-response protocol defines the interaction between presentation engines and
transformations.

For example, when a user wants to create a new class and chooses the relevant palette element, a
new CreateNodeCommand instance is created in the repository. The transformation now creates
the relevant domain and presentation instances, and the diagram engine visualizes the new Compo-
siteNode instance.

As outlined above, METAclipse consists of several presentation engines. The main and notewor-
thy engines are the following:

e Graph diagram engine — the main part of the METAclipse presentation engine, based on GEF and
some components of GMF and providing runtime for diagramming.



e Property engine — the extension of Tabbed Properties Eclipse view. Defines a consistent meta-
model and provides means for editing domain element properties.

e Project explorer engine — the extension of Common Navigator Eclipse view. Also defines a con-
sistent metamodel and provides means for representing elements in the project tree.

An original idea has been used in METAclipse for accessing instances in the transformation re-
pository from EMF. This access ("Wise Objects") has been implemented in a universal way, as a
special extension of EMF object. In the result all EMF features and services can be freely used in
METAclipse. The implementation includes also an efficient change notification. Only due to this
access mechanism, both transformations and engines can jointly manage presentation instances.

7 Transformation Structure

As it was already mentioned, the transformation set in METAclipse consists of two parts: the do-
main-independent part, which actually belongs to the framework itself, and the domain-dependent
part, which implements functionality specific to the graphical editor for some domain and should be
built for each new domain. As it was explained in the previous section, transformations in totality
have to execute the current command (only one at a time) generated by some presentation engine.

The domain-independent part includes an interpreter-like structure, which recognizes the current
command and checks its overall validity. But the main volume of domain independent procedures is
based on the static part.

The static part of the metamodel (Fig. 3) is created by special initialization transformations,
which are invoked once per project, immediately after its physical creation.

When instances of the static part are in place, many transformation tasks can be implemented in a

domain-independent way, as generic interpreters based on static instances. The first such example is
style-setting transformations, which set default styles for new diagram elements or perform data-
dependent style modifications when domain instance data have been modified (such as the appro-
priate style for an association end). Certainly, all possible style instances must be built during the
initialization. A similar schema can be used, for example, to build a universal procedure for display-
ing menu items for the selected diagram element.
The domain-dependent transformation procedures do domain-dependent semantic jobs (build do-
main and presentation instances, build details of a property dialog, update object properties and so
on). These actions cannot be performed by universal domain-independent procedures, since a lot of
specific semantic checks are to be performed during such editing. Nevertheless, these specific pro-
cedures can use a lot of domain-independent subroutines for standard jobs, such as a universal “con-
text validity” checker for a new element (on the basis of the static structure definition), a presenta-
tion element remover (used after a domain element was deleted, which may involve nontrivial
semantic checks), and others.
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Fig. 5. MOLA transformation example - create a new class

To assess the size of transformations, we conclude the section with a MOLA transformation ex-
ample (Fig. 5, see [14] for MOLA syntax). This is the transformation that creates a new class and a
class node for it. Just to have some impression, what is going on there - grey rounded rectangles are
rules, rectangles with solid borders denote pattern elements to be matched and those with dotted
borders denote new instance creation, lines correspond to metamodel associations.

8 METAclipse Experience

The first version of METAclipse has been implemented at UL IMCS as an Eclipse plugin, using
MOLA as the transformation language. The main testbed for this version has been a new editor of
MOLA itself, since MOLA is clearly in the DSL category where transformation based approach is
better. The MOLA environment has been developed in a bootstrapping manner [18], with the previ-
ous prototype editor built using the Generic Modeling Tool [8] framework. The new editor imple-
ments a lot of validity checks and smart prompting during the diagram building. The UML class
editor example discussed above actually is the simplest part of the MOLA environment, the meta-
model editor. The MOLA procedure editor requires much more sophisticated domain-specific logic
during element building or updates. Both editors are interdependent: for example, the modification
of a class name must be reflected in all class element instances in MOLA rules that reference the
given class. After the first version of METAclipse was completed (including about 180 domain-
independent MOLA procedures), the implementation of the new MOLA editor required about one
man-month to develop and test (containing about 120 procedures in the domain-dependent part;
there are about 30 essential classes in the domain metamodel). Thus the experiment can be consid-
ered a complete success.
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Fig. 6. MOLA editor implementation in METAclipse

Fig. 6 shows the editor in action — with both a sample class and MOLA diagrams visible. The tool
performance is completely satisfactory, it has been tested on examples of realistic size (about 80
MOLA procedures and 4000 domain instances total). In addition to editors, the MOLA tool con-
tains also MOLA compiler (built in a lower level transformation language L3 [27], also developed
at UL IMCS), which runs on the same repository. The developed MOLA tool is being successfully
applied as the main "MDA instrument" in the European IST project ReDSeeDS [28].

The developed MOLA editor with its sophisticated semantic checks can be considered to be a
typical complicated DSL example, and authors hope that this experience would be valid for other
such DSLs too, for example a graphical MOF QVT tool.

9 Conclusions and Future Work

The paper describes the METAclipse plugin, which provides a complete implementation of the
transformation based approach to DSL tool building. The basic principles and metamodel and trans-
formation structure is described. The paper has demonstrated that a model-transformation-based
approach to tool building on the Eclipse platform is an efficient approach in cases when mapping
between the domain metamodel and the presentation metamodel is complicated enough. The devel-
oped METAclipse plugin has been tested on a non-trivial example — a new editor for the MOLA
transformation language.

Certainly, any complicated DSL contains also simple parts where the static mapping based ap-
proach would be easier. Therefore both approaches should be combined. The difficulties there lie
mainly in an appropriate building of presentation metamodel (taking into account the MOF layer
mismatch mentioned at the end of section 2.1). Several ways to overcome these obstacles have been
found - the inclusion of wizards which would generate automatically the required transformation
procedures from the defined mappings, adding new "template-like" facilities or "meta-patterns" to
MOLA transformation language and some other. The best way is still to be found, nevertheless, au-
thors hope that this is doable.
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