
Towards Semantic Latvia
J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Opmanis, K. Podnieks

Institute of Mathematics and Computer Science
University of Latvia, Riga LV-1459, Latvia

Abstract— Tim Berners-Lee and co-authors in their seminal
paper “The Semantic Web”, published in 2001, outlined their
vision about the future Semantic Web. But today we are still far
from the implementation of this vision. Despite fundamental
achievements, like definition of OWL (Web Ontology
Language) and rapid progress of RDF/OWL content creation,
storage and processing tools, there are still very few attempts to
merge these isolated “islands of success” into a killer
application, understandable and useful also outside the expert
academic community. The primary intent of this paper is to
integrate such still isolated results into the unified “Semantic
Latvia” conception. The other intent is to propose solutions for
the identified missing components in the three fields: 1)
technology for gathering of information for the Semantic Web,
2) RDF data stores and efficient access to this information,
3) Semantic Web query tools based on MDA approach.

I. INTRODUCTION
Tim Berners-Lee and co-authors in their seminal paper [1]

outlined the key principles for the future Semantic Web.
Their vision was based on the assumption that information
will be distributed globally just like web pages in the current
WWW, except this information will be supplemented with
the machine-readable semantic tagging. Such machine
readable semantic tagging then would allow software agents
to automatically perform many information processing tasks,
which currently can be handled only manually (like planning
a therapy course for Pete’s mom in [1]).

But currently the implementation of this vision is still
associated with major theoretical and technical difficulties.
Despite fundamental achievements, like definition of OWL
(Web Ontology Language) and rapid progress of RDF/OWL
content creation, storage and processing tools, there are still
not many attempts to merge these results into the unified
“killer application”, which would be understandable and
useful also to the end-users outside the “academic/nerdy
ghetto” [2] – to those without knowledge of OWL and
university grade in ontology engineering.

The primary goal of this paper is to integrate the
fragmented Semantic Web achievements into the unified
“Semantic Latvia” conception aimed to allow a small
country like Latvia already today to take advantage of the
emerging Semantic Web technologies. In this paper we are
intentionally ignoring the privacy issues involved, as our
prime goal is to illustrate the new information system
architectures enabled by the Semantic Web.

The other goal of this paper is to identify what is still
missing for such unified “Semantic Latvia” conception and
to propose potential solutions for filling these gaps. We have
identified three gap areas: 1) technology related to
information gathering for the Semantic Web, 2) RDF/OWL
data stores providing fast access to this information, 3)
Semantic Web query tools based on MDA approach.

In the “Semantic Latvia” conception we want to include
only those technologies, which are either already
implemented, or their possible implementation is fairly clear.
These technologies also must fit well into our integrated
system. For that reason in the “Semantic Latvia” conception
we have omitted many experimental Semantic Web
developments, which by our judgment have not yet reached
“industrial” grade, like automatic semantic tagging of the
natural language documents.

We also want to stress that our “Semantic Latvia”
conception is not meant to replace the traditional information
systems. Rather, its chief goal is to enable completely new
kind of integrated information services – precisely as it was
envisioned in [1].

According to the present state-of-the-art, Semantic Web
rests on the following five pillars:

1. Ontologies;
2. RDF/OWL data extraction from distributed

heterogeneous information sources;
3. Efficient storage and retrieval of RDF/OWL data;
4. Languages and tools for Semantic Web end-users;
5. Reasoning process based on the formal semantics of

OWL DL.
In the following sections numbered accordingly, we will

mostly elaborate the first four pillars in the context of the
proposed “Semantic Latvia” conception. Moreover, we will
keep in mind the Tim Berners-Lee words in [1] that all RDF
data must be “massaged into shape by the office manager
(who never took Comp Sci 101) using off-the-shelf software
for writing Semantic Web pages along with resources listed
on the … (domain ontologies) site”.

II. ONTOLOGY ENGINEERING – A STARTING POINT FOR
“SEMANTIC LATVIA”

Ontology is a term borrowed from philosophy. But in the
context of Semantic Web it is used in a much more precise
sense: “An ontology consists of the various classes and
properties that can be used to describe and represent a

Fig. 1. The national approved ontology portal along with the list of trusted RDF data sources

(This web page and addresses are simulated).

domain of knowledge. Classes represent concepts within a
domain or across domains, and properties represent the
relationships among them” [3]. In a sense such ontologies
have been used for Information System design already for
decades, because a well-designed classic ER (entity
relationship) model is essentially the same domain ontology.
But until recently these domain ontologies (ER-models) have
been considered to be only an internal tool of the system
designers, and there was no stimulus for their wider
appreciation. But in the case of Semantic Web, the situation
changes fundamentally – namely, the development of the
domain ontologies becomes the first and foremost step for
any Semantic Web application. Moreover, the new
requirement for these domain ontologies is that they must be
understandable not only by the programmers, but also by the
end-users – i.e. they must match the commonly used domain
terminology very closely.

According to current understanding, ontologies are the
only means for the domain specialists to agree on the
common comprehension about the domain. Already in the
“pre-ontology era”, the daily needs have required to take
extra steps for establishing of such “common
comprehension” about some essential domains – for
example, in Latvia there are laws describing the structure of
the most essential national registries, like Citizen register,
Enterprise register, Transport register, Land register and
others. Among other things, these laws describe the exact
items (entities), which shall be stored in each register, and
sometimes also relations between these registers. Only a
minor step was missing, before the requirements for these
registers would have been defined by the means of an
ontology.

On the way to “Semantic Latvia”, our first
recommendation to the
government of Latvia would be
to develop formal ontologies for
the main national registers
(Citizen register, Enterprise
register, Transport register, Land
register), as they are forming the
core of the concepts essential for
the rest of public and business
applications. We believe that by
such initiative, government
would stimulate also private
sector to start developing formal
ontologies for other areas, like
consumer services, health
services, transportation, trade,
etc. which could eventually all
integrate into the joint “Semantic
Latvia”. The development of
precise domain ontologies and
their “approval by law” (so that
everyone would to stick to them)
is the single most fundamental
step towards “Semantic Latvia”.

In our view, the “ontology designer” profession has to
become as important as the profession of programmer or
lawyer today (who both presently produce complex
computer-code or complex contracts/laws for people to
obey). Strictly speaking here we are not original – similar
national ontology development projects have been started
already in USA [4] and Finland [5].

A. Ontology management infrastructure
The key advantage of conforming to W3C Semantic Web

standards and particularly to Web Ontology Language
(OWL) [6] (see also RDF [7]) is the eventual opportunity to
integrate multiple ontologies and their namespaces into the
“global Semantic Web”, as well as the possibility to apply an
ever growing arsenal of powerful tools being developed for
handling of OWL ontologies. For OWL there have been
defined three subsequent sublanguages: OWL Full, OWL DL
and OWL Lite with decreasing expressivity. For OWL DL
and OWL Lite the strict semantics rooted in Description
Logic is defined and implemented in the form of powerful
automated reasoners (“OWL DL ontology debuggers”), such
as RacerPro, Fact++ and Pellet [8]. The “Semantic Latvia”
ontologies preferably must be defined within OWL Lite;
OWL DL should be used with care due to increased
debugging and reasoning complexity. OWL Full shall not be
used at all, as its semantics is not formalized.

Besides development of the ontologies themselves, on the
national level must be established also the ontology
management infrastructure – a national ontology portal
providing a reliable access to the approved and current
versions of the national ontologies (Fig.1.)

Unlike in the ad-hoc ontology portals [17], the national
ontology portal must also standardize the namespaces used
by the ontologies and ensure that only nationally approved

namespaces are used by the nationally approved ontologies.
Our proposed solution to the namespace standardization
issue is following: a) establish a well-known domain name
for the national ontology portal (e.g.
http://semanticlatvia.gov.lv) serving also as the root for the
namespaces of all approved “Semantic Latvia” ontologies; b)
additionally certify essential international namespace roots,
such as W3C namespace http://www.w3.org, which may also
be used by the approved national ontologies; c) all national
resource URIs used by the national ontologies must have the
standard format

“http://semanticlatvia.gov.lv/ont/ontologyname.owl#localname”,
where “ontologyname.owl” is one of the approved national
ontologies stored on the ontology portal and containing the
definition of the mentioned resource “localname” (class or
property), including its natural language definition under the
pre-defined “label” property. For example, if the resource
under consideration is concept “boat” (localname), which is
defined in the approved ontology “transport.owl”
(ontologyname.owl), stored at URL
“http://semanticlatvia.gov.lv/ont/transport.owl”, then the
“transport.owl” ontology must contain at least the following
information:

<owl:Class rdf:ID=
 "http://semanticlatvia.gov.lv/ont/transport.owl#boat">
 <rdfs:comment> "an open vehicle for traveling on water"
</rdfs:comment> </owl:Class>

Finally, besides approved ontologies and namespaces, the

Semantic Latvia ontology portal also must contain the list of
trusted servers, where RDF/OWL data (class instances of
approved ontologies) can be found. Such list will typically
include the web servers of national registers, such as
Population register, Enterprise register, Transport register
etc. It is assumed (theoretically) that all these registers
regularly post all their contents in the RDF/OWL data format
according to the approved ontologies on their web server, so
that interested parties can retrieve it. In practice this step
would need to be optimized in a number of ways – besides
more advanced security, it would be also more practical to
store all this RDF/OWL data in the centralized “national”
read-only in-memory data store (discussed in the section 3),
and only incremental changes from various registers would
need to be fed into such centralized read-only RDF/OWL
store.

To set the precedent, one of the first steps could be
creating of such ontology portal infrastructure for the
“Semantic University”.

III. EXTRACTION OF INFORMATION ACCORDING TO FIXED
ONTOLOGIES

There is a massive amount of tools [12,13,14] and
literature [10,11] about manual, semi-automatic or fully-

automatic extraction of RDF data (RDF triples according to
public domain ontologies) from heterogeneous, distributed
data sources, such as HTML pages, legacy documents, news
articles, etc. If the data source, from which RDF/OWL data
needs to be extracted, has been created without knowledge of
the target ontology, then such extraction is very difficult and
complex task. It is particularly complex, if the data source is
a natural language text. In our view these technologies
currently are too immature for infrastructural use – despite
enthusiasm of some early adaptors [14], this is still the key
stumbling block for the “canonical” Semantic Web,
envisioned as a mere extension (annotation) of the traditional
web.

Our proposal for “Semantic Latvia” is different and is
based on the following two ideas:

The first idea is borrowed from Google, which effectively
crawls and copies the entire global web content to its own
distributed and indexed data store to ensure fast access
required for processing complex multi-word queries [18]. In
case of Semantic Web content, fast RDF/OWL data retrieval
is even more crucial due to higher complexity of the typical
Semantic Web inquiries or automatic reasoning tasks. To
deal with this problem, fast in-memory RDF data stores will
be discussed in the following sections.

The second idea is that domain ontologies must be
approved and made publicly available before the domain
information systems, including domain-specific textual web
content, are created (according to these approved ontologies
and their proper namespaces). In this case RDF/OWL data
extraction from the domain information systems and domain-
specific textual web content becomes a much simpler task. In
the ideal case, the information system designers themselves
should be able to implement the RDF/OWL data export
according to the approved domain ontologies, so we will not
elaborate this further. Handling of domain-specific textual
web content according to the approved domain ontologies is
slightly trickier and is discussed below.

To our surprise, presently there is very limited research [9]
and tool support for authoring of domain-specific text
documents (web pages, other document formats) with
RDF/OWL data embedded (or linked) according to pre-
defined domain ontologies. Curriculum Vitae, List of
Publications, Medical examination results, Office opening
hours, Product catalogues, etc. are examples of text
documents (web pages), which could easily be generated
semi-automatically from pre-defined OWL ontologies via
simple ontology-driven form-based data input interface.
Adobe XMP (eXtensible Metadata Platform) [15] for
embedding RDF/OWL data into PDF documents and other
media files is one of the very few industrial developments in
this direction.

Fig. 3. Hypothetical application for creating domain-specific web

pages and corresponding RDF-data according to the approved
domain ontology

Fig. 2. Graphic representation of the “papers.owl” ontology

We will illustrate our proposal by the example of creating
a web page containing a List of Publications. Of course, we
can create such web page directly in HTML without any
tools or ontologies (as most of us still do). But in such case
extracting the RDF/OWL data from such List of Publications
would be a difficult task (addressed by so called
“scrappers”), especially in the light of punctuation variations
used by various authors. According to our “Semantic Latvia”
vision, the List of Publications web page could have been
created by a simple universal application shown in Fig.3 in
following 3 steps:
1. Go to the “Semantic Latvia” web portal and find an

approved ontology for lists of publications, e.g.
http://SemanticLatvia.gov.lv/ont/papers.owl. Such
example ontology is depicted graphically in Fig.2.

2. By loading this ontology into the application shown in
Fig.3, the application automatically tunes itself and
displays the data input form with the fields and options
permitted by the selected ontology. User enters data into
the relevant input form fields; application might prompt
the already entered Person or Enterprise names (with
URI) for the Author and Publisher fields

3. When all data is entered, use buttons “Save HTML” to
generate the HTML version “mylist.html” of the list of
publications (formatting style-sheet might be applied for
nicer layout), and “Save RDF” to generate the RDF

version “mylist.rdf” containing the same information in
machine-readable format.

Both files shall be placed on the author’s web server – the
“mylist.html” file will be viewed by humans, while
“mylist.rdf” file will be used by Semantic Web applications,
such as Swoogle [16] (imitating Google by crawling and
collecting .rdf files on the web) or those described in the
following sections. Note that W3C has not defined a standard
for linking the two files “mylist.html” and “mylist.rdf”
together, which sometimes causes confusion and hinders
reliable navigation between the human-readable and
machine-readable formats. Nevertheless, following syntax
variations are commonly used to provide a link from the
HTML file to its corresponding RDF data file:

<head>
<title>My Document</title>
<meta name="OWL" content="author.rdf">
<link rel="meta" type="application/rdf+xml" href="author.rdf"/>
<link rel="alternate" type="application/owl+xml"

title="OWL" href="author.rdf" />
<link rel="alternate" type="application/rdf+xml"

title="RDF" href="author.rdf" />
</head>

The proposed 3-step process for creating machine-

readable Semantic Web content, in our view, is simple
enough to be handled by “a manager, who never took Comp
Sci 101”, as was envisioned in [1].

Strictly speaking, the proposed 3-step process is not
entirely original – a similar approach is described also in [9],
where additional means for input-form style-sheet control in
medical domain are discussed. We will return to this subject
in the section 4, where MDA and model transformations will
be used to facilitate interaction with the Semantic Web
RDF/OWL data.

IV. RDF/OWL DATA STORES
Once the RDF data is extracted, the next crucial issue is

how to store it for efficient retrieval by agents, reasoners, or
other applications. Awareness about significance of this issue
is growing – from one related paper in the 3rd International
Semantic Web Conference (ISWC 2004) to already four
related papers [19,20,21,22] in the 4th International Semantic
Web Conference (ISWC 2005). Various RDF data storage
architectures are being proposed.

Storing of RDF data in a centralized relational database is
studied in [21], where authors have tested and compared
performance of 5 different relational database representations
of RDF data: schema-aware (with explicit or implicit storage
of subsumption relationships), schema-oblivious (with or
without identifiers to represent resources) and the hybrid of
both. Their conclusions were drawn from the experiments
with the taxonomic queries: a) the hybrid representation is
the most efficient, b) schema-aware representations exhibit
better overall performance than the schema-oblivious ones,

c) the schema-oblivious representation with identifiers
exhibits the worst overall performance.

Meanwhile for more complex Semantic Web tasks, such
as semantic association discovery, according to [20], feasible
performance can be achieved only by: a) storing all RDF
data in the main memory; b) query programming through the
low-level API „suitable to operate directly on the internal
graph representation structures”. Consequently, authors of
[20] have developed a specialized in-memory RDF data store
BRAHMS and have demonstrated its superiority compared
to 3 other in-memory RDF data storage systems.

In reality, it is hard to compare different RDF data stores
without bias, because they use dissimilar API, optimized for
different types of tasks. Currently there are no any standards
for the RDF data store low-level API (note that traditional
RDF query languages like SPARQL are too high-level and
thus inefficient). Our general conclusion is that the high-
performance in-memory RFD data store issue is not yet
adequately resolved.

In the next section we will describe our own in-memory
RDF data store, code named “OUR” for the rest of the paper.
This data-store is adequate for the core registers of a small
country like Latvia. For example, Citizen and Enterprise
registers are among the largest ones, but still contain only
about 4 GBytes of raw information. At the same time the
64bit computer architecture today allows to have and
efficiently use tens of GBytes of the main memory. This
means that in-memory data stores are completely applicable
already today, especially for optimizing read-only
information retrieval tasks, where potential in-memory data
loss upon sudden equipment failure is not an issue.
Additionally, it shall be noted that in-memory it is necessary
to store only the parts of information, which are structured
and therefore meaningfully “searchable” – the rest of
information, like photos, plans of buildings, copies of
documents and like can be stored externally and referenced
to by URLs or other means. Such distinction could be coded
already in the ontology itself by adding property
“unstructured” to classes representing such unstructured
entities.

A. OUR approach – metamodel-based in-memory data
store

For RDF data storage and efficient retrieval we propose to
use metamodel-based in-memory data store. Such stores
allow RDF data to be stored internally according to an
arbitrary user-defined metamodel (domain ontology). Such
flexibility gives option to tune the data store to the specific
domain ontology for optimal storage and retrieval of
corresponding RDF data. Alternatively, the data store can be
tuned to the more generic RDF or OWL metamodel
(described in section 5), in which case it can store arbitrary
RDF triples or arbitrary OWL ontologies, at the expense of
slightly lower performance. These alternatives correspond to
the schema-aware representations and schema-oblivious
representations mentioned in [21]. The schema-aware
representation has at least two advantages: a) higher
performance, because the advance knowledge of the data

structure considerably reduces the search-space; b) more
natural queries with fewer parameters, formulated in the
terms of the domain ontology.

Selection of the data store API is not easy – it must
include only functions having efficient implementations, and
at the same time these functions must closely cover typical
Semantic Web tasks.

API of our data store is implemented as a function library.
This library offers: a) a system of low-level data retrieval
functions that is complete for low-level data query
programming (as required for Semantic Web data stores in
[20]); b) a selected set of more complicated widely usable
data searching functions. By means of a sophisticated
indexing mechanism, also these more complicated functions
are efficiently implemented.

Our API includes three groups of functions:
1. Meta-model management - about 40 functions for

creating, modifying, deleting of classes, attributes and
associations, querying about their properties, class
inheritance etc.:

• CreateClass (class_name): class_id; Creates class and
returns class identifier.

• CreateAttribute (class_id, attribute_name, base_type):
attribute id; Creates a class attribute, returns attribute
identifier (base types: boolean, integer, string etc.)

• CreateAssociation (association_name,
inverse_association_name, start_class_id,
end_class_id, start_multiplicity, end_multiplicity):
association_id; Creates association and the
corresponding inverse association (as types) between
two classes, returns association identifier.

• ConnectSubclass (subclass_id, superclass_id);
Supports multiple inheritance.

• GetClassIdByName (class_name): class_id;
• GetAttributeIdByName (class_id, attribute_name):

attribute_id;
• GetAssociationIdByName (start_class_id,

association_name): association_id;
• …
2. Instance management - about 30 functions for creating

instances, assigning attribute values, creating associations
between instances, modifying and deleting, querying about
instance attributes and associations, etc.:

• CreateInstance (class_id): instance_id; Creates a
class instance, returns identifier.

• AddAttributeValue (instance_id, attribute_id,
attribute_value); Assigns an attribute value to an
instance.

• AddAssociation (start_instance_id, association_id,
end_instance_id); Links two instances.

• GetInstanceCount (class_id): integer; Returns class
instance count.

• GetInstance (class_id, index): instance_id; Returns
identifier of i-th class instance.

• GetAttributeValue (instance_id, attribute_id):
attribute_value; Returns attribute value.

• GetAssociationCount (instance_id, association_id):
integer; Returns count of instances connected via
association_id to instance_id.

• GetAssociationPartner (instance_id, association_id,
index): instance_id; Returns identifier of the i-th
connected instance.

• …
3. Search functions are implemented as iterators. The

search process starts with specification of its scope:
• CreateIterator (parameter_list): iterator_id; Creates

an iterator, returns iterator identifier. The search scope
is specified by the parameter list (see examples
below).

The following function iteratively extracts the next portion
of the required instances:

• GetNextInstances (iterator_id, instance_count):
instance_id_list; Returns identifier list of the required
number of instances. This kind of flexibility may be
necessary for „visiting” web-agents.

At the end, the search process must be stopped:
• DeleteIterator (iterator_id); Releases resources used

for the iteration process.
The following search processes are efficiently

implemented and included in our API:
• CreateIterator (class_id); Initiates scanning of all

instances of a given class.
• CreateIterator (instance_id, association_id,

target_class_id); Initiates scanning of all instances
associated with a given instance via given association.

• CreateIterator (instance_id, association_id1, …,
association_idn, target_class_id); Initiates scanning
of all instances associated with a given instance via
given chain of connected associations. Length of
association chain is not limited.

• CreateIterator (instance_id1, association_id11, …,
association_id1m, instance_id2, association_id21, …,
association_id2n, …, target_class_id); Initiates
scanning of all instances associated with several given
instances via given chains of connected association
(conjunction). Length of association chains and
number of conjunction members is not limited.

• CreateIterator (class_id, attribute_id,
attribute_value); Initiates scanning of all instances of
a given class having a given attribute value.

• CreateIterator (class_id, attribute_id1,
attribute_value1, …, attribute_idn,
attribute_value_n); Initiates scanning of all instances
of a given type having several given attribute values
(conjunction). Number of attribute values is not
limited.

These search processes form the basis on which more
complex queries can be constructed. Web-agent support for
searching in distributed in-memory data stores is also under
development.

The described metamodel-based in-memory data store has
been developed over many years as part of high-performance

graphic modeling tools Exigen Business Modeler (EBM)
[24] and GRADE [25,26]. The key requirement of graphical
modeling tools was fast retrieval of data necessary for
displaying various kinds of tree-like views. The above
mentioned search processes were heavily optimized to
support this requirement. In case of RDF, the very same
search functions can be efficiently used for graph-like
queries such as adjacency (retrieving 1-neighborhood or k-
neighborhood), connectedness and pattern matching.

In what follows we compare the performance of or in-
memory data store with that of the Sesame tool [23] for RDF
data storing and querying, version 1.2.3. Note that the data
store BRAHMS that has been reported to have the best query
times in [20] has not yet been made available at the time of
this writing. Sesame has come out the second best according
to [20].

The experiment performed was a relatively simple, yet not
too simple query: “for all instances of a given class X, look
at all related instances in class Y and calculate the sum of
attribute values A of those Y instances found, which are
further related to an instance in class Z that satisfies a
property P.” The experiment was performed on the data
stores containing 20 thousand instances of class X, each
related with 100 instances of Y, 2 million instances of Y
altogether, on a computer with Intel 3.2GHz dual core
processor and 2GB memory. The times for calculating the
requested sum was as follows:

Sesame, with single query 6546 msec
Sesame, access through API 3875 msec
OUR in-memory data store 1109 msec

As it is possible to observe, on this example OUR data store
gives the search speed improvement about 3.5 times. The
experiment also confirms that using a low level API in
performing search tasks is more efficient than using high-
level queries. These are only preliminary encouraging results
and more detailed comparison is still necessary.

B. RDF/OWL data storing options in OUR in-memory data
store

As it was already mentioned, our data store can store
RDF/OWL data in two different ways:

• according to the given ontology (schema-aware way)
• according to the OWL metamodel (schema-oblivious

way).
Now let us go into more details. Let us assume that we

have a (very simplified) University Ontology presented in
Fig. 4.

This figure presents the ontology as an OWL graph (d
denotes domain and r denotes range). Fig. 5 presents the
same ontology as UML class diagram.

This class diagram can be treated as a domain metamodel
and be used to configure OUR in-memory data store in the
schema-aware mode. In this case the data store will keep the
data according to this metamodel and its API can be used

Fig. 6. OWL Lite metamodel

Fig. 7. University Ontology as an instance of OWL metamodel

Fig. 4. University Ontology as an OWL graph (simplified)

Fig. 5. University Ontology as a UML class diagram

according to the metamodel (e.g., a following function
invocation CreateInstance (student_id) , where student_id is
the identifier for the class Student, will be valid).

However, on the basis of ontology for one specific domain
it is difficult to define universal tools, which would be usable
for any ontology (see the next section). Therefore in the
general case it is better to store the data according to a
universal metamodel, where any ontology can be embedded.
Namely, the OWL metamodel itself serves this purpose.
OMG has published the Request
for proposals (RFP) for the
Ontology Definition Metamodel
in 2003. Currently the OMG
candidate for Ontology
Definition Metamodel is
available [3]. An interesting
independent OWL metamodel is
given in [27]. For our goals it is
very important to select such
OWL metamodel, where an
instance of this metamodel
corresponding to a given
ontology would be visually as
close as possible to the graph of
the ontology itself. Fig. 6 shows
our proposed metamodel for
OWL Lite (in this paper we limit
ourselves to OWL Lite, and
without Restrictions and
Containers). We use [3] as the
basis for this metamodel, only
the metamodel part describing
property instances is modified
according to [27].

The ontology in Fig.4 can now
be represented as an instance of
this metamodel, Fig. 7 shows
this form. Due to the adequate
choice of metamodel, Fig. 4. and
7. are quite similar.

Now OUR in-memory data
store can be configured
according to the accepted OWL
metamodel. In this case the data
store will keep OWL data
according this metamodel, in a
uniform way for any domain
ontology. This will ensure a
very flexible usage of this store.
However, in this case more
class, attribute and association
instances are required to
represent the same data.
Therefore we cannot achieve the
same performance using the
universal metamodel as that
when the data store is

configured to a specific domain ontology. However, due to
the appropriate choice of API for OUR data store, this
slowdown is not larger than 6-fold.

V. LANGUAGES AND TOOLS FOR SEMANTIC WEB END
USERS

One of the most important problems having no satisfactory
solution in the area of Semantic Web is an easy usable query
language for end users. This is due to the fact that in the area

CourseStudentDepartment

String

Lecturer

Integer

code

studName

takes teaches

age

depName

affiliated

lectName
position

CompSc
Math

V

Professor
AssocProf

V
>60

How many

Fig. 8. Window contents of the DEMO tool showing the University Ontology

of Semantic Web the types of queries cannot be standardized
beforehand, as it is possible in traditional information
systems. For example, in the classical Berners-Lee example
[1] the way Lucy instructs her Semantic Web agent is left
open. One of the more or less popular ideas is to use
Structured English to formulate queries [28], but it is very far
from a solution satisfactory in practice along this direction.

Apparently, the most natural way how to solve this
problem is to build special (domain specific) languages, and,
in our opinion, preference should be given to graphical
languages which could be understood by the end user
without special training.

Just to give a feeling how such end-user query language
could look like, we briefly sketch an example of a graphical
query language, named DEMO. Fig. 8 shows a sketch of
window contents of a would-be query tool supporting this
language. This diagram window shows OWL classes and
properties of the University Ontology (defined in section 3)
in the form of a graph (a simple class diagram). The user can
select some constraint classes, e.g., Department, Lecturer, …
and specify which instances of these classes are of interest.
For example, for Department these instances of interest are
CmpSC and Math. For properties with integer values the
corresponding bounds can be specified. Then the user can
select a query class, e.g., Student and specify the How many
option (another alternative would be List all). In the result
the tool will find how many instances of Student satisfy the
query conditions. The query presented in Fig. 8 informally
would read this way: "How many students there are in
CompSc or Math departments, for whom some courses are
taught by Professors over sixty?"

The tool supporting DEMO has to build a diagram like the
one in Fig. 8 from the corresponding ontology definition.
The challenge is how to implement such a tool with
minimum effort - due to the fact that functional requirements
for such a tool would be quite unstable and additional wishes
likely would spring up during the use.

Certainly, such a tool can be implemented in any standard
OOPL, e.g., C++, using the Repository API, but such an
implementation would be very expensive, especially the

support of diagram graphics. In the
area of modeling tool building a new
idea has appeared, namely, generic
metamodel based modeling tools
[29,30]. A certain contribution to the
development of this idea has been
made also by the authors of this paper
[31,32]. Currently the authors of this
paper are developing a much more
innovative approach, namely on a Tool
Framework based on model
transformations and their efficient
implementation (a similar approach
has been recently proposed also in
[33]). Use of model transformations in
a very flexible way is the backbone of
this new framework. On the way to

this framework the authors have developed a model
transformation language MOLA [34-39], which is well
suited for tasks arising there (as it is well known, model
transformation languages form the core of the MDA
approach, see, e.g., [40,41]). Below the idea of Tool
Framework will be briefly sketched on the basis of a DEMO
tool.

The basic idea of our framework relies on two kinds of
metamodels. One of them is the domain metamodel and
other the presentation metamodel. In our DEMO tool the
OWL metamodel (shown already in Fig. 6) will serve as the
domain metamodel. Now let us look at some details of the
presentation metamodel. This metamodel defines the type of
visual presentation used in a window, this time a graphical
one. For the DEMO tool and many similar simple diagrams
the directed graph is a very adequate presentation
metamodel. Certainly, both nodes and edges can contain text
Compartments. In addition, the presentation metamodel
contains also Events – the possible user actions on visual
elements. Fig. 9. shows both the domain metamodel (yellow
classes) and the presentation metamodel (light green classes).
The DEMO tool window example (Fig. 8) actually is an
instance of this metamodel (with events not shown for the
sake of simplicity).

The next essential component of our Tool Framework is a
presentation engine library, one for each presentation
metamodel. The presentation engine is a program which
visualizes the instances of the given metamodel and reacts to
user actions specified in the metamodel. In our example the
engine for visualizing a directed graph is used and we
assume it to be sophisticated enough to generate
automatically a readable graph layout. The reaction on an
event, such as rightclick on a node, is to set the appropriate
attribute (e.g., selected) of the node to true.

Now we can return to the structure of our DEMO tool and
show how it relies on the Tool Framework. The first task the
tool has to do is to find in an OWL model all classes and
object properties and to present in the form similar to Fig. 8.
This is done in two steps. At first the relevant information is
extracted from the OWL model and then stored according to

LeftClick RightClick

TypedLiteral
value : StringObjectLink

Diagram
name : String

LineStyle
color : Integer
w idth : Integer
name : String

OWLDatatypeProperty

OWLClass
ns : String
name : String

DatatypeLink

OWLDatatype
ns : String
name : String

ButtonOK

OWLProperty
ns : String
name : String
functional : Boolean

NodeStyle
color : Integer
lineWidth : Integer
name : String
shape : Shape

Line
selected : Boolean

Event
name : String

Node
selected : Boolean

Compartment
value : String
position : LinePos[0..1]

<enumeration>
LinePos

startUp
startDow n
endUp
endDow n

<enumeration>
Shape

rectangle
roundedrect
ellipse

OWLObjectProperty
inverseFunctional : Boolean
symmetric : Boolean
transitive : Boolean

Individual

0..1
inverseOf

0..1

*
subject
1

*
object1

ow ner
1

nodes *

*

subclassOf
*

1

style *

*

equivalentProperty
*

*

subPropertyOf
*

*

equivalentClass
*

* object
1

*domain

1

*
end 1

ow ner
1

lines *
0..1lineComp

* order=true

0..1 comparts
* order=true

*

event 0..1

1

style *

*

start1

0..1

event 0..1

map 0..1

present
0..1

map 0..1

present0..1

dmap
0..1

present
0..1

*

range1

*

range
1

*

type1

*

type1

*

type1

*

type1

*

subject 1

*

sameAs
*

Fig. 9. The extended OWL metamodel

the presentation metamodel. The
simplest way to do this task is in
a model transformation
language.

Then the presentation engine
for directed graphs is invoked,
which actually displays the
nodes and edges with text
compartments in a graph window
and starts to listen to user
actions. When user selects a
class node for the query
condition, the engine stores the
selection in the node and invokes
another model transformation
program, which transfers the
selection to the domain (OWL)
model. The query result node is
processed similarly. Finally,
when user presses the OK
button, the transformation is
invoked, which evaluates the
query and presents the result (via
the presentation engine for
simple dialogs).

Our current experience shows
that a tool like DEMO in this
way can be built with 10 times
less effort than required for
implementation directly in C++.
Certainly, this speedup is under
the condition that the
presentation engine library for
most used presentation
metamodels is pre-built. This
library is universal – it can be used for any tool within the
Tool Framework, and it has to be built only once. Currently
such a library is under development.

VI. CONCLUSION
Following is the summary of the proposed Semantic

Latvia vision:
1. It is necessary to develop and approve formal ontologies

for the domains, which will join the Semantic Latvia. (Most
of the national registers are very close to that, as their
structure is already described and approved by the law.)

2. It is necessary to create the national approved
ontologies portal, which should also list the trusted web
servers containing the RDF/OWL data corresponding to
these ontologies.

3. The existing information systems and registers, which
would like to join Semantic Latvia, must define their
ontologies and have them approved and included into the
national ontology portal. They also must ensure regular
export of their data into the RDF/OWL format according to
the approved ontology, and place this data on the trusted web
server. (Internally such registers may continue to use a

different architecture based on the relational database, but we
believe that getting their ontology approved will be a good
stimulus to eventually migrate to the RDF data-store
architecture also internally.)

4. It is possible to publish RDF/OWL data according to
approved ontologies also in the format of the regular textual
web pages, complemented with their OWL/RDF data pages
(as described in the section 2). For such textually originated
RDF/OWL data to be part of Semantic Latvia, this
information must be published on a trusted web server.

5. Similar to Google, Semantic Latvia agency must
regularly collect all RDF/OWL data from the trusted web
servers and store in its own ultra-fast in-memory RDF/OWL
data store (or stores).

6. Semantic Latvia agency can grant controlled access to
the parts of its in-memory RDF/OWL data to the wide range
of end-users, based on their access rights. Such access-rights
could be encoded already in the domain ontologies
themselves via a special “access-rights” property

7. End-users must be equipped with the new generation of
Semantic Web browsers, similar to the tool described in the
section 4. The purpose of such tool is to enable end-users to

enter complex Semantic Web queries in the most intuitive
format possible, which we believe, is the illustrated graphic
format.

8. In this paper we have discussed only the information
retrieval aspect of the Semantic Web. This gives possibility
to retrieve information about availability of the complex
resources, like a free timeslot in schedule of the nearest
therapist in the Tim Berners-Lee example. Meanwhile there
is a related issue, outside of the described Semantic Latvia
vision, about how to automatically reserve the appointment
with the found therapist. This would be an interesting issue
to explore next.

REFERENCES
[1] Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web.

Scientific American, May 2001.
[2] H.Alani et al. Towards a Killer App for the Semantic Web. ISWC

2005, LNCS 3729, pp. 829-843, 2005.
[3] IBM, Sandpiper Software. Ontology Definition Metamodel. Third

Revised Submission to OMG/RFP, ad/2003-03-40, August 2005.
URL: http://www/omg.org/docs/ad/05-08-01.pdf

[4] NCOR (National Center for Ontological Research), URL:
http://ncor.us

[5] E. Hyvonen, A. Valo et al. Creating a National Content and Service
Infrastructure for the Finnish Semantic Web. Poster & Demonstration
Proceedings, ISWC2005, Galway, Ireland, 2005.

[6] Web Ontology Language (OWL). W3C, 2004. URL:
http//www.w3.org/2004/OWL/

[7] Resource Description Language (RDF). W3C, 2004. URL:
http://www.w3.org/RDF/

[8] Hai Wang, Matthew Horridge, Alan Rector, Nick Drummond, and
Julian Seidenberg. Debugging OWL-DL Ontologies: A Heuristic
Approach. ISWC 2005, LNCS 3729, pp. 745–757, 2005.

[9] V.Kashyap et.al. Definitions Management: A Semantics-Based
Approach for Clinical Documentation in Healthcare Delivery. ISWC
2005, LNCS 3729, pp. 887-901, 2005.

[10] Fabian Abel, Robert Baumgartner, Adrian Brooks, Christian Enzi,
Georg Gottlob, Nicola Henze, Marcus Herzog, Matthias Kriesell,
Wolfgang Nejdl, Kai Tomaschewski. The Personal Publication
Reader. ISWC 2005, LNCS 3729, pp. 1050–1053, 2005.

[11] V.Uren et.al. Semantic annotation for knowledge management:
Requirements and a survey of the state of the art. Journal of Web
Semantics, Elsevier, Vol 4 (2005), p.14-28.

[12] http://cerebra.com/
[13] http://www.landcglobal.com
[14] David Huynh, Stefano Mazzocchi, and David Karger. Piggy Bank:

Experience the Semantic Web Inside Your Web Browser. ISWC
2005, LNCS 3729, pp. 413-430, 2005.

[15] www.adobe.com/products/xmp/pdfs/whitepaper.pdf
[16] http://swoogle.umbc.edu/
[17] http://www.schemaweb.info
[18] http://www.googleguide.com/google_works.html
[19] Raul Garcia-Castro, Asuncion Gomez-Perez. Guidelines for

Evaluating the Performance of Ontology Management APIs. ISWC
2005, LNCS 3729, pp.277-292.

[20] Maciej Janik, Krzysztof Kochut. BRAHMS: A workBench RDF store
And High performance Memory System for Semantic Association
Discovery. ISWC 2005, LNCS 3729, pp.431-445, 2005.

[21] Yannis Theoharis, Vassilis Christophides, Grigoris Karvounarakis.
Benchmarking Database Representations of RDF/S Stores. ISWC
2005, LNCS 3729, pp.685-701.

[22] Sui-Yu Wang, Yuanbo Guo, Abir Qasem, Jeff Heflin. Rapid
Benchmarking for Semantic Web Knowledge Base Systems. ISWC
2005, LNCS 3729, pp.745-757.

[23] J.Broekstra, A.Kampman, F.v.Harmelan. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. Proc.
International Semantic Web Conference, Sardinia, Italy, 2002.

[24] A.Kalnins, K.Podnieks, A.Zarins, E.Celms, J.Barzdins. Editor
Definition Language and its Implementation. LNCS 2247, pp.530-
537, 2001.

[25] J.Barzdins, I.Etmane, A.Kalnins, K.Podnieks. Towards Integrated
Computer Aided Systems and Software Engineering Tool for
Information Systems Design. Proc. 2nd International Workshop on
Advances in Databases and Information Systems (ADBIS'95),
Springer, pp. 3-11, 1996.

[26] J.Barzdins, A.Kalnins, K.Podnieks. MiniGRADE – A Tool for
Conceptual Modeling by Class Diagrams. Proc. 18th International
Conference on Conceptual Modeling, LNCS 1728, pp. 11-12, 1999.

[27] S.Brockmans, R.Volz, A.Eberhart, P.Loffer. Visual Modeling of
OWL DL Ontologies Using UML. LNCS 3298, pp.198-213, 2004.

[28] A.Bernstein, E.Kaufmann, A.Gohring, C.Kiefer. Querying
Ontologies: A Controlled English Interface for End-Users. ISWC
2005, LNCS 3729, pp.112-126, 2005. .

[29] A.Ledeczi, M.Maroti, A.Bakay, G.Karsai, J.Garrett, C.Thomason,
G.Nordstrom, J.Sprinkle, P.Volgyesi. The Generic Modeling
Environment, Workshop on Intelligent Signal Processing, Budapest,
Hungary, May 2001.

[30] MetaEdit resources. URL:
http://www.metacase.com/papers/index.html

[31] A.Kalnins, J.Barzdins, E.Celms, L.Lace, M.Opmanis, K.Podnieks,
A.Zarins. The First Step Towards Generic Modelling Tool.
Proceedings of Baltic DB&IS 2002, Tallinn, 2002, v. 2, pp. 167-180.

[32] E. Celms, A. Kalnins, L. Lace. Diagram definition facilities based on
metamodel mappings. Proc. 18th International Conference,
OOPSLA’2003 (Workshop on Domain-Specific Modeling), Anaheim,
California, USA, October 2003, pp. 23-32.

[33] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual
editors as eclipse plug-ins. Proc. 20th IEEE/ACM International
Conference on Automated Software Engineering, IEEE Computer
Society, Long Beach, California, USA, 2005.

[34] A.Kalnins, J.Barzdins, E.Celms. Model Transformation Language
MOLA. Proc. MDAFA 2004 (Model-Driven Architecture:
Foundations and Applications 2004), Linkoeping, Sweden, June
2004. pp.14-28.

[35] A.Kalnins, J.Barzdins, E.Celms. Model Transformation Language
MOLA: Extended Patterns. Selected papers from the 6th International
Baltic Conference DB&IS’2004, IOS Press, FAIA 118, pp. 169-184,
2005.

[36] A.Kalnins, J. Barzdins, E. Celms. Efficiency Problems in MOLA
Implementation. 19th International Conference, OOPSLA’2004
(Workshop “Best Practices for Model-Driven Software
Development”), Vancouver, Canada, October 2004. URL:
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html

[37] A. Kalnins, J. Barzdins, E. Celms. MOLA Language: Methodology
Sketch. Proc. EWMDA-2, Canterbury, England, pp.194-203, 2004.

[38] A.Kalnins, E. Celms, A. Sostaks. Tool support for MOLA. GPCE'05.
Workshop on Graph and Model Transformation (GraMoT), Tallinn,
Estonia, September 2005, pp. 162-173.

[39] A.Kalnins, E.Celms, A.Sostaks. Model Transformation Approach
Based on MOLA. ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems, Workshop: Model
Transformations in Practice (MTIP), Montego Bay, Jamaica, October
2005, 25p. URL:
http://sosym.dcs.kcl.ac.uk/events/mtip/programme.html

[40] Object Management Group Request for Proposal: MOF 2.0 Query /
Views / Transformations RFP. URL: http://www.omg.org/cgi-
bin/apps/doc?ad/02-04-10.pdf

[41] Object Management Group MOF QVT Final Adopted Specification.
URL: http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf

