
DSL tool development with transformations and static

mappings

Elina Kalnina

University of Latvia, IMCS, Raina bulvaris 29, LV-1459 Riga, Latvia

Elina.Kalnina@lumii.lv

Abstract. A tool development platform for domain-specific languages

combining mapping and transformation based approaches is proposed in this

research project. Combination should be made to use advantages and eliminate

disadvantages of both approaches as far as possible. Initial results are described.

 1 . Introduction

Currently it is very popular to create and use specialized modelling languages for a

domain area. Theses languages are called domain-specific languages (DSL). By using

domain-specific languages users can operate with familiar terms. There can be

graphical or textual domain-specific languages. Only graphical languages will be

considered here. Operational semantics of DSL is also out of scope of this research

project. A visual domain-specific language basically consists of two parts – the

domain part and the presentation (visual) part. Sometimes they are called also the

abstract and concrete syntax respectively.

The domain part of the language is defined by means of the domain metamodel,

where the relevant language concepts and their relationships are formalized. Standard

MOF [1] or similar notations are used for the definition of domain metamodel.

For the presentation part (concrete syntax) definition there is no universally

accepted notation. The same metamodelling techniques are used, but with various

semantics. Instances of classes in the presentation metamodel are types of diagram

elements to be used in the diagram. A concrete set of graphical element types for a

diagram definition is called the presentation type (or graphics) model (similarly to

GMF [2]).

Due to the growing popularity of domain specific languages various graphical tool

building platforms have been developed to improve the tool building process. Two

different approaches are used in these environments. The first option is to use a

mapping-based approach. This solution is quite appropriate for simple cases, where

no complicated mapping logic is required. In this case tools for simple DSLs can be

developed even during a presentation session. However, DSL support frequently

requires much more complicated and flexible mapping logic. In this case the second

approach is used: to define the correspondence by model transformation languages.

Mapping based platforms are MetaEdit [3], GMF platform [2], Microsoft DSL

Tools [4], Generic Modeling Tool [5] and some other. Transformation based

A. Pretschner (ed.): MODELS Doctoral Symposium, Toulouse, 29.9.2008 9

platforms are METAclipse platform [6], Tiger project [7], ViatraDSM framework [8]

and GrTP [9]. A detailed overview of platforms is given in [6].

The purpose of this paper is to show how these approaches could be combined.

In chapter 2 both approaches are briefly sketched. In chapter 3 ideas how these

approaches could be combined are shown.

 2 . Mapping and transformation approaches

A mapping-based approach prescribes by means of which presentation type model

element each domain metamodel element must be visualized. Thus, the graphical tool

functionality is basically defined by this mapping. The mapping itself can be defined

as a mapping model according to the mapping metamodel. The mapping typically

may be complemented by use of constraints, but only at few selected points.

Most of the frameworks (GMF, MS DSL,…) use the generation step, by means of

which language classes are generated in the corresponding OOPL (Java, C#,…) from

the involved models. The generated code ensures the relevant synchronization

between the domain and presentation models in runtime. If the generated functionality

is insufficient, the language code can be extended manually. Actually, mapping may

be used without the generation step too - examples are MetaEdit+ [3] and Generic

Modeling Tool [5], which are model interpreters.

It must be noted that the mapping approach is easy to use - if the generated code is

sufficient (or should be accompanied by a small amount of manual code), the tool

definition is mainly declarative and very fast. However, when the presentation type

model is dissimilar to domain metamodel, a lot of code in an OOPL must be added.

A complete alternative to the mapping-based approach is the model transformation

based approach. The correspondence between the domain and presentation is defined

by transformations in a model transformation language, for example, MOLA [10, 11].

These transformations define what modifications must be done in one of the models,

if the other changes (due to user actions or other internal activities). Therefore the

correspondence between the domain metamodel and presentation type model may be

arbitrarily complicated here. In fact, transformations control the complete tool

behaviour.

From the first glance this approach is more complicated to use - though experience

shows that programming model element mappings in an adequate model

transformation language is much easier than in a standard OOPL. The usability of the

approach is ensured also by the fact that a significant part of the transformations are

domain-independent and are built only once, as part of the framework itself. Clearly,

the transformation driven approach is more time consuming in simple cases.

Usually, for some parts of the tool the correspondence from domain to presentation

is simple (fit for mappings) and for some complicated (fit for transformations). The

best solution would be to combine both approaches. In this case for simple one-to-one

relations between domain and presentation the mapping based approach could be

used, but for complicated parts model transformations could be written. For example,

for MOLA Editor [6] (built using transformations in METAclipse) the transformation

size could be reduced approximately by 50% if mappings were applicable. Simple

A. Pretschner (ed.): MODELS Doctoral Symposium, Toulouse, 29.9.2008 10

visualisation could be defined by mappings, but for complicated consistency

maintenance transformations would still be needed.

Currently there are only known two attempts to combine both approaches in a

limited way. The latest versions of Tiger project [7] propose to add more complicated

user commands to the mapping-based GMF environment by transformations in AGG

language. ViatraDSM [8] proposes to extend basic mapping facilities in Eclipse GEF

by means of graph rules in Viatra.

 3 . Research project description

The main topic of the given research project is how to add mappings to a

transformation based tool development platform. The METAclipse platform [6] built

by UL IMCS is chosen as the basis for research project realisation. It is completely

based on transformations and uses the transformation language MOLA.

Mapping definition support will be added to this platform in the given research

project. To ensure usability mappings and transformations should be smoothly

integrated.

There are several options how to do this. The first one is to generate

transformations from mappings. In this case the generated transformations can be

later on modified manually. There is a problem with updates, when transformations

should be regenerated. This approach is similar to one used in mapping-based tools.

The second option is to add extension points where custom transformations can be

added to the mapping definition. Extension points are places where built-in mapping

possibilities can be replaced or extended by custom transformations. In this case,

there is a nontrivial problem how to choose extension points and how to integrate

them with the defined mappings. In this case an interpreter or generator can be used to

process the mappings.

One more solution could be to combine both approaches. Then well selected

extension points would permit to eliminate the need for generated code modifications

to a great degree.

 3.1 . The platform from the user point of view

The proposed tool definition platform will be metamodel based. At the beginning the

domain metamodel of a domain specific language should be built (e.g., by MOLA

metamodel editor). The next step would be to define the presentation type model and

mappings between the domain metamodel and presentation type model. All this will

be done using wizard-style dialogs in the tool development platform.

If built-in mapping possibilities are not suitable for some task, the user will be able

to select/create custom MOLA procedure (using the built-in MOLA editor).

Appropriate parameters to and from this procedure should be passed, to ensure

integrity with the mappings. For each extension point parameters passed to

procedures used in this extension point are predefined.

A. Pretschner (ed.): MODELS Doctoral Symposium, Toulouse, 29.9.2008 11

When the tool development is complete, the user can press the button “Build tool”.

Thus the tool executable in one step is obtained. Alternatively, if there is such a need

the user can edit the generated code and then compile it.

 3.2 . Mapping definition

Mappings are based on typical mapping patterns. A large set of mapping patterns has

been identified in Generic Modeling Tool [5] and they will be reused in this project.

Mapping definition is based on the mapping and presentation type metamodels as

the abstract syntax of the “mapping language”. The visible form of this language will

show up as wizard-style dialogs, which will build instances of these metamodels.

Appropriate tool support can be built with a small effort using METAclipse platform.

For the mapping metamodel the most important task is a seamless integration of

mappings with custom MOLA procedures. The mapping metamodel granularity and

structure should be chosen so that each action could be replaced with an appropriate

custom MOLA procedure. The transformation based approach permits to use a more

detailed mapping granularity than in traditional mapping based tools.

Presentation definition in a graphical tool consists of several parts: property

dialogs, diagrams as well as model tree, menus etc. In this paper only a subset from

the property dialog part of the presentation and mapping metamodels is briefly

sketched [Fig 1.], in order to demonstrate the proposed integration ideas. We assume

here that typical Eclipse-style dialogs are used.

When a property dialog for a domain class is to be defined, at first an appropriate

property dialog type (i.e., its structure, element types and functionality) is designed,

then it is mapped to domain metamodel elements. A property dialog consists of tabs,

which can be either a FieldList (for displaying class attributes and linked class

instances) or a Grid (for displaying child instance properties in a tabular form). The

basic element of both is a Field, whose type definition is the central point in the

approach. For each field type it must be defined what must be shown there when the

corresponding class instance is selected. For many field kinds (e.g. combobox) the

available valid value set (e.g., a set of selected class instances) must be generated and

visualized. Finally, it must be defined what has to be done when the value is modified

(in Eclipse-style dialogs the model update follows immediately).

As the metamodel fragment [Fig. 1] shows, for all these situations possible typical

cases are defined via mappings to domain metamodel elements (e.g., which class

attribute must be visualized in a field in the simplest case). The metamodel contains

also structuring elements defining various typical ways how these elementary

mappings can be combined, e.g., expressions built over elementary mapped values. In

all cases the corresponding mapping-based definition can be replaced by a call to a

specified custom MOLA procedure, in many situations these calls can be added for

pre- or post-processing. One more novel idea is to use MOLA patterns for defining

custom instance set filters, e.g., for selection of relevant child instances. This close

integration of mappings and procedural approach is a key factor in reaching the goal

when the transformations generated from mapping need only be combined with the

specified custom MOLA procedures, but require no direct manual modification.

A. Pretschner (ed.): MODELS Doctoral Symposium, Toulouse, 29.9.2008 12

Fig. 1. Mapping and presentation metamodel subset describing property dialogs

The metamodel part for diagram presentation can be built on the same principles,

only more classes would be present since it is more complicated.

 3.3 . Facilities required to implement the approach

The approach requires a sort of generator generating MOLA transformations from the

defined mappings. The most straightforward approach would be to define this

generator in MOLA language. However, a more interesting solution requiring less

effort to be implemented can be provided in this project.

It is possible to define a “MOLA template language”. This language is a direct

generalisation of popular textual template languages (of the kind model-to-text) to

graphical languages. Certainly, only the abstract syntax form (model) of MOLA can

be easily generated, but this is sufficient for the subsequent compilation. The planned

MOLA template language would contain two kinds of MOLA statements: standard

ones to be executed during the generation process and those to be “copied” to the

generated “code” (in fact, model) with template parameters (in fact, expressions)

replaced by the appropriate generation time values. Some interesting solutions could

appear here, for example how to generate a set of similar procedures from one

template procedure. The template part of the language most probably would require

some natural extensions of MOLA syntax, for example, reference to a parameterized

class in the MOLA pattern definition.

The first experiments show that generator algorithms in such a template MOLA

could be defined quite easily. The implementation of template MOLA itself would

also not be very complicated. The existing MOLA editor in METAclipse could be

extended for this purpose. In turn, the “pre-processor” converting template MOLA to

ordinary MOLA also seems to be not very complicated, after that the existing MOLA

A. Pretschner (ed.): MODELS Doctoral Symposium, Toulouse, 29.9.2008 13

compiler can be used. It should be noted, that the template MOLA has a value of its

own as a general purpose macro-processor for MOLA.

Another possible way to implement the transition from mapping definitions to

MOLA would be to build a universal interpreter in MOLA which would directly

interpret them. Some experiments show that the interpreter would consist of

procedures quite similar in form to those used in generator. Certainly, some true

extensions to MOLA language and compiler would be required in this case. Also,

there would be no possibility for tool builder to modify the “generated” code.

However, the total effort for interpreter approach could be less.

 4 . Conclusions

The overall goal of this research project is to develop the scientific basis required to

create a DSL tool development platform with integrated mapping and transformations

support. The main target is to develop language and metamodel facilities for this

platform. Only an experimental version of the platform is planed to validate the

proposed approach and languages.

Currently draft requirements for such a tool development platform have been

developed. The first version of mapping definition and generation/interpretation

languages has been developed. These languages should be improved and tested on

real life examples. Tool support for them should be developed. Detailed architecture

of the tool should be developed.

Though there are many open questions, first experiments (redefining some parts of

MOLA tool) seem to be very promising.

References

1. Meta-Object Facility (MOF), http://www.omg.org/mof/

2. Graphical Modeling Framework (GMF), http://www.eclipse.org/gmf/

3. MetaEdit+ Method Workbench User’s Guide, Version 4.0,

http://www.metacase.com/support/40/manuals/mwb40sr2a4.pdf, 2005.

4. S. Cook, G. Jones, S. Kent, A. C. Wills: Domain-Specific Development with Visual Studio

DSL Tools. Addison-Wesley, 2007.

5. E. Celms, A. Kalnins, L. Lace: Diagram definition facilities based on metamodel mappings.

OOPSLA’2003, Workshop on DSM, Anaheim, California, USA, October 2003, pp. 23-32

6. A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks, J. Barzdins: Building Tools by

Model Transformations in Eclipse. Proceedings of DSM’07 workshop of OOPSLA 2007,

Montreal, Canada, Jyvaskyla University Printing House, 2007, pp. 194–207.

7. C. Ermel, K. Ehrig, G. Taentzer, E. Weiss: Object Oriented and Rule-based Design of

Visual Languages using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12

8. I. Rath, D. Varro. Challenges for advanced domain-specific modeling frameworks. Proc. of

Workshop on Domain-Specific Program Development (DSPD), ECOOP 2006, France.

9 J. Barzdins, A. Zarins, K. Cerans, et. al. GrTP: Transformation Based Graphical Tool

Building Platform, Proc. of Workshop on MDDAUI, MODELS 2007, Nashville, USA.

10. A. Kalnins, J. Barzdins, E. Celms: Model Transformation Language MOLA. Proceedings of

MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62-76

11. UL IMCS, MOLA pages, http://mola.mii.lu.lv/

A. Pretschner (ed.): MODELS Doctoral Symposium, Toulouse, 29.9.2008 14

