
MOLA 2 Tool

Audris Kalnins, Agris Sostaks1, Elina Kalnina, Edgars Celms1 and Oskars Vilītis1

MOLA 2 Tool is an academic model transformation tool implementing the MOLA
transformation language. It is a principally new version of a tool having a new user-friendly
development environment and an efficient compiler. The main existing and expected
application area is to serve as a transformation support for MDSD process, another area is the
transformation-based generic tool development.

MOLA Language

MOLA is a graphical model transformation language developed at the University
of Latvia, IMCS [1,2]. Similarly to most of model transformation languages, MOLA
is based on pattern matching. However, its main distinguishing feature is the use of
simple procedural control structures governing the order in which pattern matching
rules are applied to the source model. The basic idea of MOLA is to merge traditional
structured programming as a control structure with pattern-based transformation rules.
The key language element is a graphical loop concept. Active usage of MOLA
language since 2004 for various MDSD related tasks has confirmed its easy
readability and low learning curve. There have been only few extensions necessary
for the language during this period.

MOLA 2 Tool

Since the first presentation of MOLA tool in ECMDA’05 the MOLA support has
been completely rebuilt. A new significantly more user friendly Transformation
Development Environment (a set of graphical editors) has been built and a set of
several optimizing compilers to various runtime environments have been developed.

The new Transformation Development Environment (TDE) has been built on the
basis of METAclipse tool building framework [3], which also has been developed by
the University of Latvia, IMCS. METAclipse is a metamodel and transformation
based tool building platform, which is specially fit for the support of complicated
graphical domain specific languages, and MOLA is such a language. From the
technical point of view, METAclipse is a set of Eclipse plugins which extend the
functionality of standard Eclipse components EMF, GEF and partially, GMF [4,5,6].
It contains advanced presentation engines, which support graphical diagram building,
property editing and all other diagram and model related facilities. More precisely, the
engines perform all the various visualisation and user interaction related tasks in a
standard way typical to Eclipse environment, they do these jobs on the basis of a fixed
presentation metamodel. However, the main functionality of a tool based on
METAclipse is defined by transformations, which link the domain and presentation
(visualisation) models in the tool, fill up property dialogs, and process the updated
property values. In METAclipse framework these tool-specific transformations are
built in MOLA.

1 supported partially by ESF (European Social Fund), project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0063

Figure 1 shows the general architecture of MOLA 2 Tool. The editor part of TDE
supports the two diagram kinds used in MOLA: class diagrams for defining the
combined source/target metamodel and MOLA diagrams displaying the MOLA
procedures constituting a transformation. The transformation technology used in
METAclipse permits to make the diagram editing very user friendly and safe. For
example, very dedicated prompters based on the context-sensitive part of MOLA
syntax offer only the relevant elements for referencing, element name modifications
are automatically propagated to all referencing elements and so on. Usage experience
of about one year has confirmed the high quality of MOLA 2 TDE in practice.

At the same time, since transformations defining MOLA TDE are built in MOLA
itself (a bootstrapping approach is used!), the development of MOLA 2 TDE has
served as one of large-scale applications of MOLA.

MOLA Tool Specific
Transformation Library

METAclipse Framework
(Eclipse based)

Built in Transformations

Presentation Engines
(Plugins, Controlled by Eclipse)
– Project Engine
– Property Engine
– Graph Diagram Engine
– Menu Engine

Tool services
(import/export, ...)

MOLA
Compiler

to C++ (mii_rep)
.dll

to JAVA (EMF)
.jar

EMF(ECore)
repository based

models

JGraLab
repository based

models

mii_rep
repository based

models

MOLA Transformation Execution Environment
(MOLA TEE)

MOLA Transformation Definition Environment
(MOLA TDE)

to JAVA (JGraLab)
.jar

MOLA Tool Specific
Transformation Library

METAclipse Framework
(Eclipse based)

Built in Transformations

Presentation Engines
(Plugins, Controlled by Eclipse)
– Project Engine
– Property Engine
– Graph Diagram Engine
– Menu Engine

METAclipse Framework
(Eclipse based)

Built in Transformations

Presentation Engines
(Plugins, Controlled by Eclipse)
– Project Engine
– Property Engine
– Graph Diagram Engine
– Menu Engine

Tool services
(import/export, ...)

MOLA
Compiler

to C++ (mii_rep)
.dll

to JAVA (EMF)
.jar

EMF(ECore)
repository based

models

JGraLab
repository based

models

mii_rep
repository based

models

MOLA Transformation Execution Environment
(MOLA TEE)

MOLA Transformation Definition Environment
(MOLA TDE)

to JAVA (JGraLab)
.jar

Figure 1. MOLA2 Tool architecture

A screenshot of MOLA 2 Tool (TDE part) displaying one metamodel fragment and
one MOLA diagram is shown in Figure 2.

Another crucial part of MOLA 2 Tool is the MOLA compiler. A completely new
optimizing MOLA compiler has been built, which supports an efficient pattern match.
The compiler back-end generates OOPL code from a MOLA transformation, which
after the compilation is capable of executing against an appropriate model repository.
Actually, three different back-ends have been built. The oldest one generates C++
code against the API of high performance custom model repository mii_rep [7] built

by UL IMCS. Two other back-ends generate Java code, one against the open source
high performance graph/metamodel based repository JGraLab [8] built at the
University of Koblenz. However, the most important for wide usage of MOLA is the
newest back-end generating Java against the API of Eclipse EMF, which is the most
popular model repository kind so far. In all cases the final compilation step also can
be invoked from TDE, thus the MOLA compiler produces the complete executable
library (jar or dll) which can be run against the relevant repository.

Figure 2. MOLA2 TDE screenshot

The MOLA Transformation Execution Environment (TEE) is dependent on the
chosen repository for holding the models and metamodels. The widest possibilities
are offered by EMF, which is the cornerstone for any Eclipse-based model
management. In particular, a start-up model (instance) editor can be built very easy,
as long as its metamodel is available in EMF. In addition, there are large libraries of
models in EMF, built for other transformation tools. It is planned to extend TDE by a
facility for converting MOLA transformation into an Eclipse plugin. Then it will be
easy to incorporate MOLA transformations into various Eclipse-based modelling
tools, for a flexible support of various model driven development scenarios.

The two other kinds of repositories have their own support for model management,
for example, mii_rep is integrated to a model browser, which can be used to analyse
and create models and invoke transformations. However, the main use case for these
repositories is to facilitate the incorporation of MOLA transformations into other tools

based on these repositories. Thus, the mii_rep repository is used for transformation
execution inside METAclipse (via JNI (Java Native Interface) mechanism, see [9]).

MOLA usage experience and perspectives

One large-scale MOLA usage has already been mentioned – it is the development
of transformations for MOLA 2 TDE inside METAclipse. The mii_rep based version
was used there because of the bootstrapping requirements (the transformations were
initially developed using the previous TDE).

Another large-scale application of MOLA is in the 6-th Framework IST project
ReDSeeDS [10]. One of the aspects of this project is a true transformation based
software development along refined MDA guidelines. For example, there a special
Requirements model (in a UML-like language RSL [11], this model is a sort of
refinement for OMG CIM) is used. Non-trivial transformations are used to obtain the
initial version of Architecture model (in a rich subset of UML) from the Requirements
model. Similarly, the Architecture model can be transformed to a Detailed Design
model (an analogue to OMG PSM). The first versions of supporting MOLA
transformations have already been built and tested in practice. Here the JGraLab
repository is used, since some other tools in ReDSeeDS also use this repository.

The widest applicability of MOLA is expected for the EMF based version, due to
reasons already mentioned.

References

[1] Kalnins A., Barzdins J., Celms E.: Model Transformation Language MOLA. Proceedings

of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.
[2] UL IMCS, MOLA pages, http://mola.mii.lu.lv/
[3] Kalnins A., Vilitis O., Celms E., Kalnina E., Sostaks A., Barzdins J. Building Tools by

Model Transformations in Eclipse. Proceedings of DSM’07 workshop of OOPSLA 2007,
Montreal, Canada, Jyvaskyla University Printing House, 2007, pp. 194–207.

[4] Eclipse Modeling Framework (EMF, Eclipse Modeling subproject),
http://www.eclipse.org/emf/

[5] Graphical Editor Framework (GEF, Eclipse Tools subproject), http://www.eclipse.org/gef/
[6] Graphical Modeling Framework (GMF, Eclipse Modeling subproject),

http://www.eclipse.org/gmf/
[7] Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,

Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius, Lithuania,
O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp. 203–218.

[8] Universität Koblenz-Landau, Institute for Software Technology, Graph Laboratory
http://www.uni-koblenz.de/FB4/Institutes/IST/AGEbert/MainResearch/GraphTechnology/GraLab

[9] Java Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html

[10] ReDSeeDS. Requirements Driven Software Development System. European FP6 IST
project. http://www.redseeds.eu/, 2007.

[11] Smialek M., Bojarski J., Nowakowski W., Ambroziewicz A., Straszak T.: Complementary
Use Case Scenario Representations based on Domain Vocabularies. Proceedings of
MODELS 2007, Vol. 4735, Springer LNCS, 2007, pp.544 – 558.

