
Tool support for MOLA

Audris Kalnins 1, Edgars Celms 2,3, Agris Sostaks 4

IMCS
University of Latvia

Riga, Latvia

Abstract

The paper describes the MOLA Tool, which supports the model transformation
language MOLA. MOLA Tool consists of two parts: MOLA definition environment
and MOLA execution environment. MOLA definition environment is based on the
GMF (Generic Modeling Framework) and contains graphical editors for metamodels
and MOLA diagrams, as well as the MOLA compiler. The main component of
MOLA execution environment is a MOLA virtual machine, which performs model
transformations, using an SQL database as a repository. The execution environment
may be used as a plug-in for Eclipse based modeling tools (e.g., IBM Rational RSA).
The current status of the tool is truly academic.

Key words: Model transformations, MDD, MOLA, MOLA tool.

1 Introduction

Practical use of Model Driven Development (MDD) for building systems is im-
possible without appropriate tools. Principles of MDA and MDD are known
for quite a time and several model transformation languages, including the
emerging OMG standard (QVT-Merge) [15] have got certain publicity. How-
ever, there are very few truly MDD tools available. At the time of writing,
the available commercial tools supporting MDD (OptimalJ[14], ArcStyler[2],
Objecteering[13] and other) do it well for specific kinds of PSM (frequently,
J2EE) and specific design methodologies, but modifying the used default
model transformations is as hard as extending traditional modeling tools -
in most cases conventional OOP languages are used to define transformations.
On the other hand, the experimental model transformation tools - ATL[3],

1 Email: Audris.Kalnins@mii.lu.lv
2 Email: Edgars.Celms@mii.lu.lv
3 supported partially by ESF
4 Email: agree@os.lv

c©2005 Published by Elsevier Science B. V.



Kalnins, Celms and Sostaks

MTF[12], Tefkat[16], etc. which are mainly Eclipse EMF based and use var-
ious (mainly textual) transformation languages, are not well linked with the
model providers - the modeling tools.

In this paper the academic MOLA tool, which is being developed at the
University of Latvia and supports the graphical model transformation lan-
guage MOLA [7], is described. The goal of the design has been to have a
simple implementation, which nevertheless would be practically usable in the
MDD context. The structure and main principles of the tool are described,
and also its links with modeling tools. In a more detailed way, it is shown how
MOLA execution environment can be linked to Eclipse EMF based modeling
tools. This is illustrated by a case study - an application of MDD principles
to IS design based on Hibernate framework.

2 Brief Description of MOLA

The MOLA tool is based on the MOLA model transformation language, devel-
oped at the University of Latvia, IMCS [7,8,9,10]. MOLA is a graphical proce-
dural transformation language. Its main distinguishing features are advanced
graphical pattern definitions and control structures taken from the traditional
structural programming. To facilitate the understanding, we briefly remind
the main concepts of MOLA.

Like most of the model transformation languages, MOLA is based on
source and target metamodels, which describe the source and target mod-
els respectively. The used metamodeling language is EMOF [11](with some
slight restrictions). In MOLA source and target metamodels are combined in
one class diagram, but packages may be used for structuring. The source and
target may coincide. Special mapping associations linking the correspond-
ing classes in source and target metamodels may be added to the metamodel.
Their role is similar to relations in other transformation languages - for struc-
turing the transformation and documenting the transformation traceability.

The transformation itself is defined by one or more MOLA diagrams
(see examples in Fig. 6 and 7). A MOLA diagram is a sequence of graphical
statements, linked by arrows. The most used statement in a MOLA diagram
is the FOREACH loop - a bold-lined rectangle. A loop has a loop head (a
grey rounded rectangle), which contains the loop variable (bolded element)
- a class, instances of which the loop has to iterate through. In addition,
the loop head contains a pattern, which specifies namely which of the in-
stances qualify for the given loop. A pattern is a metamodel fragment, but in
instance notation - element name:class name, therefore classes may be re-
peated. Links just correspond to metamodel associations. A pattern element
may contain an attribute-based constraint - an expression in OCL subset. The
semantics of loop is quite natural - the loop must be executed for all instances
of the loop variable for which there exist instances of other pattern elements
satisfying their constraints and linked by the specified links (pure existence

2



Kalnins, Celms and Sostaks

semantics). Loops may be nested, the instance of the loop variable (and other
elements) matched in the parent loop may be referenced in the nested loop by
the reference notation - the element name prefixed by @ character.

Another kind of graphical statements is the rule (a grey rounded rectangle
too), which also contains a pattern but without loop variable. A rule typically
contains actions - element or association building (red dotted lines) and dele-
tion (dashed lines). A rule is executed once in its control path (if the pattern
matches) or not at all - thus it plays the role of an if-statement too. A loop
head may also contain actions. MOLA subprograms are invoked by the call
statement (possibly with parameters).

One year experience of using MOLA (mainly in academic environment -
from undergraduate to PhD students) has confirmed its ease of learning and
high readability of defined transformations - especially when compared to the
current QVT-Merge proposal [15].

Actually, quite a few graphical model transformation languages are now in
use - besides the graphical form of QVT-Merge, Fujaba Story diagrams (SDM)
[6] and the GME-based GReAT notation [1] is used. The pattern definition
facilities are approximately of the same strength in all these approaches, in-
cluding MOLA. There are differences in defining the rule control structure,
the Fujaba approach is the closest one to MOLA, but is less structured, while
GReAT is more based on data flows. Actually we don’t mention here the graph
transformation languages, which have slightly different goals. A more com-
prehensive comparison of MOLA to other languages has been already given
in [7].

3 The Architecture of MOLA Tool

The current version of MOLA tool has been developed with mainly academic
goals - to test the MOLA usability, teach the use of MDD for software system
development and perform some real life experiments. This has influenced some
of the design requirements, though with easy usability as one of the goals and
sufficient efficiency the tool has confirmed its potential as an industrial tool
too.

Like most of the model transformation tools, the MOLA tool has two parts
- the Transformation Definition Environment (TDE) and the Trans-
formation Execution Environment (TEE). Both these environments have
a common repository for storing the transformation, metamodels and models
(in the runtime format). Fig. 1 shows the general architecture of the tool.

The definition environment is related to the metamodel level - M2 in the
MOF classification. Its intended users are methodology experts who provide
the metamodels and define the transformations for development steps which
can be automated. Since MOLA is a graphical language, TDE is a set of
graphical editors, built on the basis of GMF [4] - a generic metamodel based
modeling framework, developed by University of Latvia, IMCS together with

3



Kalnins, Celms and Sostaks

the Exigen company.

The execution environment (related to M1 level) is intended for use by
system developers, who according to the selected MDD methodology perform
the automated development steps and obtain the relevant target models. Cur-
rently two forms of TEE are available. The form closer to an industrial use
is an Eclipse plug-in, which can be used as a transformation plug-in for UML
2.0 modeling tools, including the commercial IBM Rational tool RSA. This
use is described in more details in section 5 and demonstrated on a case study.
Another form is a more experimental one. It is based on GMF as a generic
modeling environment and is intended for various domain specific modeling
and design notations. It is described more closely in section 6.

Fig. 1 shows both the components of the MOLA tool (rounded rectangles)
and the used data objects (rectangles). Besides the traditional class diagram
notation, arrows represent the possible data flows. Data objects in MOLA
runtime repository are annotated as tables because it is SQL based.

Figure 1. MOLA Tool environment architecture.

4



Kalnins, Celms and Sostaks

Now some more comments on the MOLA TDE. It contains graphical edi-
tors for class diagrams (EMOF level) and MOLA diagrams. Both the source
and target metamodels are shown in the same class diagram, together with
possible mapping associations. A transformation is typically described by sev-
eral MOLA diagrams, one of which is the main. Since the graphical editors
are implemented on the basis of GMF, they have professional diagramming
quality, including automatic layout of elements. In addition to editors, TDE
contains the MOLA compiler which performs the syntax check and converts
both the combined metamodel and MOLA diagrams from the GMF repository
format to the MOLA runtime repository format. Fig. 2 shows a screenshot of
MOLA TDE, with both metamodel and MOLA diagram editors open.

Figure 2. Screenshot of the MOLA TDE.

4 MOLA Virtual Machine and Repository

The core of the MOLA TEE is MOLA Virtual Machine (VM) - an interpreter
performing the model transformation. Certainly, it is closely linked to the
MOLA repository, whose main function is to ensure the efficiency of MOLA
VM. The most crucial factor in implementing MOLA VM is the implementa-
tion of pattern matching - the most “expensive” part in any transformation
implementation.

Model transformation tools [3,12,16] typically are implemented on meta-

5



Kalnins, Celms and Sostaks

model based repositories such as Eclipse EMF. Such an implementation typ-
ically uses low level repository operations for pattern matching and is more
compiler than interpreter. Authors of this paper have shown [10] that a very
efficient MOLA implementation is possible this way. However, for this aca-
demic implementation of MOLA another goal was set - the implementation
must be as simple as possible, but still usable on examples of reasonable size,
e.g., to transform a model containing several hundred classes.

Therefore another solution was adopted - to use an SQL database as a
repository. The key rationale for this solution has been that a complete MOLA
pattern match operation can be implemented by one SQL Select statement. In
addition, this Select statement can be generated very easily from the MOLA
pattern definition also stored in SQL tables in an appropriate way by the
MOLA compiler. Thus MOLA VM would be quite close to a pure interpreter
and therefore simple. The implementation of other MOLA elements is not so
sensitive to repository format because it is a fairly classic implementation of
traditional control structures. Namely these principles are used for MOLA
VM implementation in this version of MOLA tool.

The only problem which remained to be solved was efficiency. The query
generated from a MOLA pattern is quite untypical for standard SQL databases
- it is a “self-join” of two tables (representing class and association instances
in the model) as many times as there are elements and links in the pattern.
Not all database engines occurred to process such joins satisfactorily. Since
the desire was to build the MOLA tool as open source based as possible, the
first candidate was MySQL. However, it occurred that for large patterns the
performance was not satisfactory - the query optimization itself used by the
MySQL engine was too lengthy for this type of queries. Another candidate
was the free version Microsoft SQL - the MSDE engine. It performed quite
efficiently for patterns occurring in reasonable MOLA programs and quite
large example models. This way the stated goals for both simple and efficient
MOLA VM were reached.

5 MOLA Transformation Execution Environment as an
Eclipse plug-in

The MOLA TEE besides the MOLA VM must contain components for fetching
the source models to be transformed and passing the transformation results.
In a typical MDD scenario there must be also a modeling environment where
the source models are prepared and the obtained target models are processed
further. In the approach where MOLA transformations are used as plug-
ins for Eclipse EMF namely this scenario is assumed. The environment was
selected due its popularity as a model transformation testbed and because
there is a publicly available UML 2.0 metamodel [17] for this environment.
The MOLA TEE in this case, in addition to MOLA VM, contains XMI import
component, XMI export component and a simple Eclipse plug-in (see the lower

6



Kalnins, Celms and Sostaks

layer of TEE in Fig. 1). The XMI import component currently supports a
reasonable subset of UML 2.0 metamodel (in its EMF version). The XMI
export component also supports a subset of UML 2.0, but in addition some
other metamodels available in EMF are supported (e.g., the SQL database
definition metamodel). The plug-in currently is very simple - it is used just
to activate the TEE and select the source and target XMI location and the
required MOLA transformation. The source model must be exported by the
Eclipse modeling tool export facility and the generated target model imported
by the import facility.

Currently this schema has been tested with the only professional Eclipse
EMF based modeling tool truly supporting UML 2.0 - IBM Rational RSA. As
soon as more Eclipse based modeling tools support the UML 2.0 metamodel,
the same plug-in would be applicable to them. At the time of writing, there is
no true transformation plug-in for RSA (the embedded RSA transformation
extension facilities require coding in Java), so the developed plug-in could
present also some practical interest. Certainly, a more user friendly solution
would be to acquire the relevant source model directly via Eclipse API and
pass the result this way too, but this solution is much more complicated and
more tied up to a specific modeling tool.

The proposed solution seems to be practically usable for various MDD style
development scenarios. Section 7 contains one such case study - a scenario
where the Hibernate persistence framework is used. Since MOLA is well suited
for model-to-model transformations, but not so well for model-to-code, the
built-in code generation facilities of RSA (or other modeling tool) are used for
this purpose.

6 Standalone MOLA Transformation Execution Envi-
ronment

Another possibility to have a usable transformation execution environment is
to tie the MOLA VM up to a generic modeling environment where an arbitrary
graphical modeling notation can be supported. Since the GMF environment
[4] is such one, another MOLA TEE has been based on it. Truly speaking,
Eclipse+EMF+GEF [5] is also such an environment, but the development
there requires much more effort. The MOLA TEE version based on GMF is
meant for various experiments in applying MDD and model transformations
to domain-specific notations, including non-UML ones. The top layer of TEE
in Fig. 1 shows the corresponding components. In GMF it is possible to de-
fine the graphical presentation of a domain model as a sort of transformation
(though not very universal, see more in [4]), therefore for many modeling nota-
tions usable graphical editors can be defined without proper programming at
all. In any case, Eclipse EMF style model browsers/editors, but more flexible
ones, can be built very easily with GMF. Universal metamodel-controlled ex-
port and import components from/to GMF repository have been built. This

7



Kalnins, Celms and Sostaks

task has not been so hard since the GMF repository is functionally close to
EMOF. The relevant MOLA transformation can be invoked directly from this
environment (MOLA VM is used as a GMF plug-in).

Several such experiments have been performed. In one case, a UML activ-
ity diagram profile (a complicated one and represented graphically) meant for
defining workflows in UML was implemented in GMF, and a transformation
to a specific workflow notation was defined in MOLA. GMF has a special fea-
ture of generating readable diagrams automatically, therefore in many cases
the transformed target model can be automatically presented as a diagram.

Another GMF based experiment has been in converting a special profile
of class diagrams to OWL notation for ontology definitions.

7 Case Study: Use of MOLA Tool for Building an IS
within Hibernate Framework

In this section we show how the Eclipse plug-in form of MOLA tool could
be used for MDD style development of information systems in Java within
the Hibernate persistence framework. This framework provides a “classical”
object-relational mapping between Java classes and database tables, permit-
ting a developer to access instances of such classes (actually stored in a data-
base) as if they were true Java objects. The modeling tool where the models
are built is assumed to be IBM Rational RSA. Just one nontrivial step in the
methodology is illustrated. We assume that a PIM - an IS domain model in
the form of a standard UML 2.0 class diagram has been built (see a small
example in Fig. 3).

Figure 3. UML class diagram with stereotypes in RSA (PIM model).
Some of the classes must be persistent - stored in a relational database as

tables. The standard Hibernate mapping is assumed for these classes, which
requires “standard” Java getters and setters to be added for the persistent at-
tributes and association ends of a class, with other attributes and operations
unmodified. In addition, for each such mapping the Hibernate mapping de-

8



Kalnins, Celms and Sostaks

scriptor (an XML file) must be built. Thus the task is to build a PSM model
consisting of three parts - the augmented UML classes, database schema def-
inition and Hibernate mapping descriptors.

Figure 4. Part of class diagram for Hibernate framework in RSA(PSM model).
In order to specify adequately the logical design decisions at the PIM level,

a custom profile (HibernateProfile) is required. This profile should contain
the stereotypes persistent (both for classes and properties, representing ei-
ther attributes or association ends), PK - for attributes (properties), FK - for
association ends (properties) and inhPK - for defining Hibernate-style storing
of persistent subclasses. If these stereotypes are appropriately applied to the
PIM model, then the three-part PSM can be generated automatically by a
MOLA transformation - for each persistent class a table will be defined (con-
taining persistent attributes and associations), getters/setters will be added
to the class and the Hibernate descriptor will be defined. Fig. 3 shows these
stereotypes applied (RSA does not visualize stereotypes for association ends).
All classes there are assumed to be persistent, but not all attributes. Classes
in a PIM normally should contain also business operations, we don’t show
them for brevity. We assume also that primary keys consist of one column
(Hibernate uses a complicated mapping for complex keys).

Figure 5. Data model visualization in RSA (PSM model).
Fig. 4 shows the first component of the result - the updated class diagram

(fragment). Getters and setters are added where appropriate, but custom
stereotypes are removed - RSA does not use them for code generation.

Fig. 5 shows the second component of the result - the database schema.

9



Kalnins, Celms and Sostaks

The model is built according to the EMF SQL metamodel, but RSA data
model visualization feature is used to show the schema as a diagram.

Finally, Fig. 6 and 7 show the part of the MOLA transformation - the
main program and SQL table building.

Figure 6. MOLA transformation program (main).
The metamodels are not shown due to lack of space. The source meta-

model is the standard UML 2.0 metamodel. However, in EMF a special coding
(not the OMG standard, but eCore defined via the EAnnotation metaclass)
is used for applied stereotypes. Namely this coding is used in transforma-
tions - in UML 2.0 the applied stereotypes show up as instances in the model,
therefore model transformations must treat them as instances of special tem-
porary metaclasses (note the MOLA pattern for finding a persistent class in
the FOREACH loop of Fig. 6). The AddGettersSetters transformation (not
shown here) uses the same UML metamodel as a target - it is an update trans-
formation, which simply attaches new Operation instances to existing Class

instances. The BuildRDBTable program (Fig. 7) builds a table for the class
and then performs a loop, which builds a column (including its type and key
constraints) for each persistent property. The target metamodel for this pro-
gram is the SQL metamodel in EMF, but for BuildHibernateMapping - the
metamodel obtained from the Hibernate XML schema definition. Actually in
MOLA all these metamodels appear as a common class diagram, but packages
are used to separate them. The same packages are used to guide the MOLA
tool XMI exporter component - in this case several separate XMI files must
be generated, but for Hibernate mapping a non-XMI XML coding is required.

10



Kalnins, Celms and Sostaks

Figure 7. MOLA transformation program (BuildRDBTable).

8 Conclusions

The structure and some use cases of the experimental academic MOLA tool
have been described in the paper. The existing experience of using the tool
has shown that the adopted solutions are appropriate and MOLA transforma-
tions fit in well both in the traditional UML based MDD style development
and in domain specific modeling. Certainly, the practical tool usability has to
be improved, especially the links with the modeling tools. One more issue to
be solved is the “round-tripping”, because in MDD setting the target mod-
els are also sometimes updated manually. MOLA transformations have no
“native reversibility”, but it is clear that for typical MDD tasks reverse trans-
formations are easy to build, using either mapping associations (in standalone
environment) or special annotations (in EMF environment). Yet another task
is to build a MOLA transformation library for typical MDD use cases.

11



Kalnins, Celms and Sostaks

References

[1] Agrawal A., G. Karsai, F. Shi. “Graph Transformations on Domain-
Specific Models”. Technical report, Institute for Software Integrated Systems,
Vanderbilt University, ISIS-03-403, 2003

[2] ArcStyler. URL: http://www.interactive-objects.com/

[3] ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/

[4] Celms E., A. Kalnins, L. Lace. “Diagram definition facilities based on
metamodel mappings”. Proceedings of the 18th International Conference,
OOPSLA’2003 (Workshop on Domain-Specific Modeling), Anaheim, California,
USA, October 2003, pp. 23-32.

[5] Eclipse GEF. URL: http://www.eclipse.org/gef/

[6] Fujaba User Documentation. URL:
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/
FujabaDoc.pdf

[7] Kalnins A., J. Barzdins, E. Celms. “Model Transformation Language MOLA”.
Proceedings of MDAFA 2004 (Model-Driven Architecture: Foundations and
Applications 2004), Linkoeping, Sweden, June 10-11, 2004. pp.14-28.

[8] Kalnins A., J. Barzdins, E. Celms. “Basics of Model Transformation Language
MOLA”. ECOOP 2004 (Workshop on Model Transformation and execution in
the context of MDA), Oslo, Norway, June 14-18, 2004.
URL: http://heim.ifi.uio.no/ janoa/wmdd2004/papers/

[9] Kalnins A., J. Barzdins, E. Celms. “MOLA Language: Methodology Sketch”.
Proceedings of EWMDA-2, Canterbury, England, 2004. pp.194-203.

[10] Kalnins A., J. Barzdins, E. Celms. “Efficiency Problems in MOLA
Implementation”.
19th International Conference, OOPSLA’2004 (Workshop “Best Practices for
Model-Driven Software Development”), Vancouver, Canada, October 2004.
URL: http://www.softmetaware.com/oopsla2004/mdsd-workshop.html

[11] MOF 2.0 Core Final Adopted Specification.
URL: http://www.omg.org/docs/ptc/03-10-04.pdf

[12] MTF. URL: http://www.alphaworks.ibm.com/tech/mtf

[13] Objecteering. URL: http://www.objecteering.com/

[14] OptimalJ. URL: http://www.compuware.com/products/optimalj/

[15] QVT-Merge. URL: http://www.omg.org/docs/ad/05-03-02.pdf

[16] Tefkat. URL:
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/

[17] UML 2.0 Eclipse EMF. URL: http://www.eclipse.org/uml2/

12

http://www.interactive-objects.com/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.eclipse.org/gef/
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
http://heim.ifi.uio.no/~janoa/wmdd2004/papers/
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.alphaworks.ibm.com/tech/mtf
http://www.objecteering.com/
http://www.compuware.com/products/optimalj/
http://www.omg.org/docs/ad/05-03-02.pdf
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
http://www.eclipse.org/uml2/

	Introduction
	Brief Description of MOLA
	The Architecture of MOLA Tool
	MOLA Virtual Machine and Repository
	MOLA Transformation Execution Environment as an Eclipse plug-in
	Standalone MOLA Transformation Execution Environment
	Case Study: Use of MOLA Tool for Building an IS within Hibernate Framework
	Conclusions
	References

