
Modeling languages and tools: state of the art

Audris Kalnins, Janis Barzdins, Karlis Podnieks
Institute of Mathematics and Computer Science

University of Latvia
Raina bulv. 29,

LV – 1459 Riga, Latvia
E-mail: { audris, jbarzdin, podnieks }@cclu.lv

KEYWORDS

Modeling, Business Process Modeling, Object
Modeling, Unified Modeling Language (UML),
Modeling Tools.

ABSTRACT

The paper presents some discussion on current
issues of modeling languages and tools. Two areas
are considered: business modeling and Unified
Modeling Language based modeling (object
modeling). The application areas well covered by
existing languages and tools and those where
further development is required are pointed out.
Some of the authors' experience in solving current
modeling problems is presented, especially in
object modeling area.

INTRODUCTION

By modeling, even narrowed down to the IT area,
one can understand very different issues – from
building class diagrams to writing a set of
differential equations. Yet when browsing the Web
or visiting Amason.com, you see two hot topics in
modeling:

• business process modeling
• Unified Modeling Language (object

modeling)

Certainly, a separate issue, always interesting,
though to a specific audience, is data modeling
(ER- modeling), but we will not consider it here.
The paper presents a brief overview of available
languages and tools in the two named areas. A
modeling approach is basically determined by its
language. Since all this modeling is graphic, a
modeling language is determined by its diagram
types and relations between them..

BUSINESS PROCESS MODELING

The business modeling area has been extremely
active in mid-nineties. Now it has stabilised on
quite a few popular business modeling languages.
These are ARIS(EPC) [Scheer], IDEF0 [Hill],
IDEF3, as well as languages based on
CATALYST [CSC] notation or simple flowcharts.

It should be noted, that IDEF0 – the simplest of
them – is still used as an official standard in the
USA.

To illustrate the language style, the papers shows
small fragment of an Order processing example in
some of these languages.

Product needed

Reque st serv ice New order V alidate order

Order correct

Fill order
Pay

Order r ejec ted

Deliver orderOrder delivered

Customer

S ales
 assistant

Stockroom
personnel

Order
provides input for

executes

Fig. 1. Business process in ARIS EPC

Sales assistant

Customer

Sales assistant

Customer

Receive rejection

1
Request service

Validate order

4

Deliver
order3

Fill order

1

Pay
&

J1

X
J1

&

J

L19

L18

L15

L12

L8

Order correct

Order rejected

L

L

Sales assistant

Customer

Sales assistant

Customer

Receive rejection

1
Request service

Validate order

4

Deliver
order3

Fill order

1

Pay
&

J1

X
J1

&

J

L19

L18

L15

L12

L8

Order correct

Order rejected

L

L

Fig. 2. Business process in IDEF3 (in SA2001)

Despite different graphical symbols used, their
basic syntax and semantics (or essence of their
metamodels) is quite similar. The notation actually
is "flowchart-based". There are activities
(functions, UOBs etc), linked by control flows
(sometimes also object flows), with decisions
(branches), fork/join symbols and merges
governing the control flow. The performer of an
activity can be specified, most frequently by the
swimlane notation. An activity may be refined by
another diagram of the same type. The standard
semantics of a business process is that, starting
from a sort of a start symbol, activities are
sequentially executed in the order which is
prescribed by the corresponding control flows, with

possible concurrent execution, where the diagram
explicitly prescribes this.

 The UML activity diagram (formally belonging to
the second area covered by this paper) actually falls
into the same category. The activity diagram has
become widely accepted in UML only recently with
the advent of UML version 1.3. Since then it has
been admitted that business modeling is a proper
part of Unified Modeling approach.

Pay

Order
[Placed]

Deliver order

Order
[New]

Validate order

Sales assistant

Request
service

Customer

Fill order

Stockroom
 personnel

[Order correct]

[Order
rejected]

Fig. 3. Business process as UML activity diagram

None of the languages mentioned contain formal
numeric activity attributes such as activity duration,
branch probabilities, input event frequency etc.
These properties are delegated to the respective
simulation extensions defined by the corresponded
tools (and therefore visible only in corresponding
data entry windows, but not in diagrams). Though it
makes the modeling language definition very
simple, frequently even for a qualitative assessment
of a business system via its model this approach is
to simplistic.

A different approach is taken by the GRAPES-BM
[Kalnins et al 1996] language, where there is one
language for modeling and simulation, the
simulation-relevant numeric attributes are part of
the language definition. Though it makes language
definition more complicated, it permits also
quantitative assessment of model without
simulation (if necessary, the tool can "hide"
additional data in diagrams, to retain high-level
diagram readability). One more distinguishing
feature is more concurrency in default task
(activity) semantics. In accordance with this, the
flow join and merge is generalised to the universal
triggering condition concept.

Receive
rejection

Customer

Pay
Customer

Fill order
Stockroom
personnel

Order rejected Order correct

Validate order
Sales assistant

OrderRequest
service

Customer

Deliver order
AND
Sales assistant
"1d"

New order

Placed order

Fig. 4. Business process in GRADE

A comparison of business process modeling
languages with respect to their functionality is
given also in [Kalnins et al 1998].

All the mentioned business modeling languages are
well supported by tools. The biggest share of the
market is taken by the ARIS tool [Scheer],
supporting the ARIS language. But the greatest
number of tools exist for IDEF0 and IDEF3, the
most popular tools being System Architect
2001(Popkin Software) [SA 2001] and BPwin
(Computer Associates) [Bpwin].

Business modeling languages and the business
modeling itself serve two distinct roles. The first
role is the Business process reengineering (BPR).
Here the goal is to investigate business processes of
a company and to document (map) them in a more
or less formal way. The most important aspect to be
covered is to analyse the enterprise-wide processes,
by means of which the products or services of the
company are produced. The existing (“as-is”)
business model is obtained. On the basis of this
model process improvements can be discussed.
These improvements are documented in one or
more to-be models of the company. The models
must have their quantitative aspects well specified.
The merits of proposed improvements can be
discussed on the basis of these models and the best
improvement version found. Simulation is also
frequently used for this purpose. Most of business
modeling languages are specially built for this
purpose.

The other application of business modeling is in the
first stage of IT system development. The
requirements for a complicated IT system cannot be
specified if the business processes which must be
served by the system are not well documented. All
the above-mentioned business modeling languages
can be used successfully for this purpose, but UML
activity diagrams were specially introduced for this
goal. The main objective here is to document as
precisely as possible the logic of business
processes. On this basis the business rules which

must be incorporated in the components of the IT
system can be found. In contrast to the previous
application of business modeling, the quantitative
aspects of business processes are less important
here.

Several aspects of this application currently are not
well supported, neither by language facilities nor
tools. From the language side, good facilities to
associate the main business process components –
activities (tasks) to the proposed system
architecture and structuring are missing. A very
important deficiency is an inability in any of the
business modeling languages to associate
effectively the man-machine interaction activities to
the corresponding screen forms. Authors of this
paper are currently working on this problem. From
the tool side, the possibility to transfer (even
partially) the relevant knowledge on activity
sequences to software component interaction
specification would be highly desirable. The issue
of linking activities to screen forms is hard also for
tools. Some partial solutions to this problem are
available in GRADE.

Similar to the previous application is also the use of
business process diagrams for workflow definition.
The Workflow Management Coalition [WfMC]
proposes state diagrams as the formalism for
workflow definition, but most of practical
workflow definition tools use some sort of business
process diagrams.

OBJECT MODELING AND UML

Quite a different situation is in the area of object
modeling. After the “method wars” in mid-nineties,
there is one dominating language – Unified
Modeling Language (UML) [Rumbaugh 1999].
Though not formally standardised, due to the
efforts of OMG it has become a de facto standard.
Currently OMG has finalised the UML version 1.3,
but the development of a more radical improvement
– the version 2.0 is under way (it is expected to
appear in 2001). The only real contender to UML is
OML [OPEN Consortium]. But its share is small.

Despite its clear naming, UML has a dual role – of
an object-oriented modeling language and a design
language for OO development of systems.
Currently the second aspect is more elaborated, at
least there are clear mappings between UML class
diagrams and their implementations in OO
programming languages. This mapping is supported
by tools in both directions.

But the pure modeling aspect of UML is
significantly less elaborated. It concerns the use of
class diagrams for high-level conceptual modeling

of systems, as well as the use of various “dynamic”
diagrams of UML – use case, activity, sequence,
collaboration and state for behaviour modeling.
Certain usage of state and collaboration diagrams
for low-level design specification is quite clear. But
the high level behaviour description is unresolved
to a great degree. There are some local deficiencies
in the semantics definition of behaviour description
[Hitz]. But the most essential cause is the lack of
clear guidelines in the language definition how the
diagrams are interrelated. The official UML “usage
guide” - the Rational Unified Process (RUP) does
not solve this problem either. It concentrates more
on the organizational aspects of the development
process (the roles in the development team, reports
produced etc) than on pure methodological aspects
how a correct sequence of UML diagrams could be
obtained. A research both making the language
more coherent in this area, and producing
reasonable guidelines for the usage is still needed.

Some short discussion on modeling guidelines and
clarification of UML language semantics in the
context of high level modeling is given here.

The first issue is building of conceptual class
diagrams for complicated systems. The
methodology in this area has been started by
Rumbaugh in his fundamental book [Rumbaugh
1991] on object modeling but somehow has not
been consistently continued in the context of UML.
So even simple rules how to choose class and
association/role names so that they represent the
real world entities in the most easy-to read way are
of high value (there is a lot of advice available how
to do it for software design documentation). An
important rule is a consistent positioning of role
names with respect to association lines (by the way,
supported by very few tools, one of them GRADE).
A simple rule (“what could be the class instances in
a snapshot of the system”) helps to assign correct
cardinalities of associations. These are just some
rules available in this area. Further research here
could be linked to pure linguistic aspects of a
precise description of a system.

Important issue in transition from the first
conceptual class model to a more distributed
description of the system aspects by separate UML
diagram types is the consistent use of stereotypes in
class diagram. Fig. 5 (produced by GRADE) shows
some of the authors’ experience how the initial
view on both static structure and actions can be
represented by a stereotyped class diagram. The
simultaneous presentation of both these aspects in
one diagram permits one to get an easier
understanding of a complicated system.

Ticket

CKI
agent

Acceptance
 for Flight

Flight
Coupon

Passenger

Assigning of Boarder
number and Preparing

 of Boarding pass

Baggage checking
 and printing of

Bag tags

Boarding pass
Boarding number

Bag tags
Boarding number

 1..*

performs

based on

inspectshas

 1

results in

 1

receives

results in

 *

Fig. 5. Conceptual model as a GRADE class
diagram

One more issue is the behaviour description in
UML and how it is related to static structure
description. Besides the problems common to
general business modeling and discussed already in
the previous section, an important issue is how to
structure use cases and the corresponding activity
diagrams so that a well structured and readable
description of the desired system fundamentality is
obtained. Here some formal guidelines also have
been proposed by the authors.

UML is well supported by tools, there are about 70
of them in the market. The unchallenged leader is
Rational Rose (Rational Software) [Rational Rose
98], with some real share belonging to SELECT
Enterprise (Princeton Softech) [SELECT],
PLATINUM Paradigm Plus (Computer Associates)
and COOL:Jex (Sterling Software) [COOL:Jex]. All
the tools support well the low level design, close to
the implementation, especially so called round-trip
engineering. But the pure modeling aspects and
high-level design is much less supported. This area
is more demanding in good graphics capabilities for
easy drawing of large diagrams, smart wizards
supporting a modeling methodology, natural
incorporation of multimedia-style description of
key objects etc. Currently most of the tools does
not support these features. In principle, UML
activity diagrams could be used for full-scale
business modeling, including simulation, but no
tool currently supports this. Very few tools
currently support all features of UML activity
diagrams according to UML 1.3, even the latest
version of Rational Rose (v. 2000e) still has
deficiencies here, e.g., concurrent object flows are
not supported.

CONCLUSIONS

The current trends in both business and UML-based
modeling have been discussed. Some of the areas
where there are problems both in modeling
methodology and language support have been
described. Some suggestions how the tool support
should be improved are also given.

REFERENCES

Bpwin, 1999, Bpwin Product overview
http://www.cai.com/products/platinum/appdev/bpwin_ps.
htm

COOL:Jex, 2000 COOL:Jex Product Info
http://www.sterling.com/content/prod_serv_factsheet.asp
?id=90&plid=2&pid=8&sid=1

CSC 1995 CSC Catalyst Methodology, CSC Inc,

Hill, S.C. 1994 A Concise Guide to the Idef0 Technique :
A Practical Approach to Business Process
Reengineering, Enterprise Technology Concepts Inc.

Hitz, M., Kappel, G. 1999 UML @ Work, dpunkt.verlag,
Heidelberg.

Kalnins, A., Barzdins J. et al. 1996 Business Modeling
Language GRAPES-BM and Related CASE Tools.
Proceedings of the Second Baltic DB&IS'96, Institute of
Cybernetics, Tallinn.

Kalnins, A., Kalnina, D., Kalis, A. 1998 Comparison of
Tools and Languages for Business Process
Reengineering.- Proceedings of the Third Baltic
DB&IS'98, Riga.

OPEN Consortium OPEN Modeling Language (OML)
Reference Manual http://www.omg.org/docs/ad/97-01-
24.pdf

Rational Rose 98. 1998 Using Rational Rose, Rational
Software Corporation.

Rumbaugh, J., Blaha, M. Premerlani, W. Eddy, F.
Lorensen, W. 1991 Object-oriented Modeling and
Design, Prentice-Hall,

Rumbaugh, J., Booch, G., Jackobson, I. 1999 The Unified
Modeling Language Reference Manual, Addison-Wesley.

SA 2001, System Architect 2001,
http://www.popkin.com/

Scheer, A.W. 1999 Aris-Business Process Modeling,
Springer Verlag

SELECT, 1999 SELECT Enterprise Product Info,
http://www.selectst.com/products/ProductInfo.asp?9

WfMC 2000 WfMC Standards: Interface 1
http://www.aiim.org/wfmc/standards/docs/if19910v11.pd
f

	Modeling languages and tools: state of the art
	Audris Kalnins, Janis Barzdins, Karlis Podnieks
	Institute of Mathematics and Computer Science
	University of Latvia
	Raina bulv. 29,
	LV – 1459 Riga, Latvia
	E-mail: { audris, jbarzdin, podnieks }@cclu.lv
	ABSTRACT
	The paper presents a brief overview of available languages a
	OBJECT MODELING AND UML
	The current trends in both business and UML-based modeling h

	REFERENCES

