
Model Transformation Approach Based on MOLA

Audris Kalnins, Edgars Celms1, Agris Sostaks

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia
{Audris.Kalnins, Edgars.Celms}@mii.lu.lv, agree@os.lv

Abstract. This paper provides a solution to the mandatory transformation
example specified in MOLA – a graphical model transformation language
developed at the University of Latvia. The solution is validated by executing it
via the MOLA execution environment on several examples. In addition, a
solution to one of the optional examples – determinization of a non-
deterministic automaton is provided.

1 Introduction

The idea of model transformations as the main support for model driven software
development is already gaining some maturity now. First and foremost, it appears in
the area of model transformation languages. The emerging OMG standard model
transformation language, QVT-Merge [1], most probably will reach its final shape at
the end of this year. But while waiting for this, various independent model
transformation languages gain their maturity too. Most of the languages use some sort
of the pattern concept (to be matched in the source model) and rules controlling the
application of patterns.

According to a very rough grouping, model transformation languages can be
divided into textual and graphical languages. The QVT-Merge language fits into both
groups since it has both textual and graphical form. Textual languages such as
ATL[2], MTF[3], Tefkat[4], MT[5] and many other, though very different in details,
typically use recursion as the main control structure.

Graphical transformation languages are significantly less in number. Besides QVT-
Merge, Fujaba Story diagrams (SDM) [6] and GME-based GReAT [7] notation
should be mentioned. The MOLA transformation language, which is the topic of this
paper is namely in this category. In addition, graph transformation languages (such as
AGG [8]), though originally built for different goal, actually have similar
characteristics. It should be noted, that many characteristics of the graphical
languages are somewhat similar too.

 An unbiased comparison of qualities of transformation languages is not so easy to
obtain, because there are so many different subjective viewpoints. Therefore this
workshop, where very precisely defined requirements for a mandatory transformation
example are given in its CFP [9], could provide the first such impartial comparison.

1 supported partially by ESF (European Social Fund), project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0063

This paper presents a solution to this transformation task specified in MOLA – a
graphical language developed at the University of Latvia, IMCS. Though the
description of the same transformation in graphical languages is longer than in textual
ones, authors consider the provided solution to be optimal from the readability and
clarity point of view (though this is subjective too). The solution is validated on test
models, by executing it via the MOLA tool. The paper describes how a problem
specific modeling environment (for building test models) linked to the MOLA
execution environment can be built using GMF – a generic modeling framework also
developed at the University of Latvia (unfortunately, a name clash has occurred – an
Eclipse project also named GMF [10] has been recently started).

Sections 2 and 3 provide a brief introduction to MOLA and its tools. The section 4
presents the solution of the mandatory transformation example, but section 5 – its
validation via MOLA tool. Section 6 provides MOLA solution for one of the optional
examples – the determinization of a non-deterministic automaton.

2 Brief Description of MOLA Language

The MOLA model transformation language has been developed at the University of
Latvia, IMCS [11,12,13,14], the most complete description is given in [11]. MOLA is
a graphical procedural transformation language. Its main distinguishing features are
advanced graphical pattern definitions and control structures taken from the
traditional structural programming. In this section we briefly remind the main
concepts of MOLA. Later on in the examples sections example diagrams will be
annotated by comments, which will allow easily to follow the notation.

Like most of the model transformation languages, MOLA is based on source and
target metamodels, which describe the source and target models respectively. The
used metamodeling language is EMOF [15] (with some slight restrictions). In MOLA
source and target metamodels are combined in one class diagram, but packages may
be used for structuring. The source and target metamodels may coincide. Special
mapping associations linking the corresponding classes in source and target
metamodels may be added to the metamodel. Their role is similar to relations in other
transformation languages – for structuring the transformation and documenting the
transformation traceability. If necessary, temporary classes and/or associations for
storing intermediate data may be added.

The transformation itself is defined by one or more MOLA diagrams. A MOLA
diagram is a sequence of graphical statements, linked by arrows. The most used
statement in a MOLA diagram is the FOREACH loop – a bold-lined
rectangle(). A loop has a loop head (a grey rounded rectangle -),

which contains the loop variable (a bolded element – e.g., at:Attribute) – a class,
instances of which the loop has to iterate through. In addition, the loop head contains
a pattern, which specifies namely which of the instances qualify for the given loop.
A pattern is a metamodel fragment, but in instance notation – it contains elements,

e.g., cl:Class , therefore classes may be repeated. Pattern links just correspond to
metamodel associations. A pattern element may contain a constraint – an expression

in OCL subset, which must be true for an instance to qualify. The semantics of loop is
quite natural – the loop must be executed for all instances of the loop variable for
which there exist instances of other pattern elements satisfying their constraints and
linked by the specified links (pure existence semantics). Loops may be nested, the
instance of the loop variable (and other elements) matched in the parent loop may be
referenced in the nested loop by the reference notation – the element name prefixed
by @ character. Besides the FOREACH loop, there is also the less used WHILE loop

(), which is executed while there is at least one instance of loop variable
for which the pattern matches, i.e., the same instance may be processed several times.

Another kind of graphical statement is the rule (a grey rounded rectangle too),
which also contains a pattern but without loop variable. A rule typically contains
actions – element or association building (red dotted lines) and deletion (dashed
lines). A rule is executed once in its control path (if the pattern matches) or not at all –
thus it plays the role of an if-statement too. A loop head may also contain actions.
MOLA subprograms are invoked by the call statement (possibly with parameters),
recursive calls are permitted. The parameters may be references to elements or
primitive values.

One year experimental usage of MOLA, mostly in academic environment, has
suggested few extensions with respect to the original definition of MOLA in [11].
Firstly, the use of NOT constraint in patterns has been clarified and extended. A

MOLA element in a pattern may have the NOT constraint, e.g.,
 {NOT}

at:Attribute . The
meaning is that the whole pattern matches, if there is no instance of the given class,
which satisfies the local OCL constraint (if any) and has the specified links with the
other ("positive") elements of the pattern. In addition, there may be a NOT constraint
on a pattern link (no such link may exist between the matched instances) and a NOT-
region – a rectangle containing several pattern elements (then there may be no
properly linked match for the whole subpattern). Since the last two cases are not used
in this paper, we present no more details of semantics for them.

Other extensions are related to control flows – now there are graphical equivalents
for most of structured control constructs of modern programming languages. A rule
may have two exits – one unmarked and the other one marked {ELSE} (any of them
may be absent). If the rule pattern matches (and the rule actions are performed), the
unmarked exit is taken. Otherwise, the ELSE exit is taken. If the required exit is
absent, there is a default transition – if inside a loop body, then to the next iteration
("implicit continue"), if at the top level of a MOLA program, then it means the
program end ("implicit return"). Thus a true if-then-else construct is provided.
Branched control flows may merge again, but it is forbidden to build a "proper goto"
– to branch backwards. Elements matched in a rule may be referenced only in its
"positive path". In the context of a loop, some more options are available. A flow may
reach the loop rectangle from inside – it means an "explicit continue". A flow may
also cross the loop border – this is an "explicit break" (or "explicit return", if the
target is an end symbol). In any case, no backward loops are permitted this way.

3 MOLA support tools

 A MOLA tool supporting the MOLA transformation language has been built at the
University of Latvia (see the first report on it in [16]). MOLA tool has two parts – the
Transformation Definition Environment (TDE) and the Transformation
Execution Environment (TEE). Both environments use a common runtime
repository, which currently is a relational database. There transformations,
metamodels and models all are stored.

The definition environment (TDE) is at the metamodel level (M2 in the MOF
classification). Since MOLA is a graphical language, TDE is a set of graphical
editors, built on the basis of GMF [17] – a generic metamodel based modeling
framework, developed by University of Latvia, IMCS together with the Exigen
company. It contains graphical editors for class diagrams (EMOF level) and MOLA
diagrams. Both the source and target metamodels currently are shown in the same
class diagram, together with possible mapping associations. A transformation is
typically described by several MOLA diagrams, one of which is the main. In addition
to editors, TDE contains the MOLA compiler which performs the syntax check and
converts both the combined metamodel and MOLA diagrams from the GMF
repository format to the MOLA runtime repository format. All MOLA examples in
this paper have been taken from the MOLA TDE.

MOLA TEE is based on the MOLA Virtual Machine (VM) – an interpreter
performing the model transformation, with instance data kept in the runtime
repository (RDB). MOLA VM performs MOLA statements by converting them to
SQL queries. It should be noted, that the most complicated element of MOLA – a
pattern in a loop head or rule can be converted to a single SQL query. Thus the given
implementation of MOLA is sufficiently simple (see more details in [16]). At the
same time the experience with MOLA tool shows that it is also efficient enough –
models with hundreds of instances may be transformed in seconds, if an appropriate
RDB is used for the repository (currently – MSDE [19], the free version of MS SQL).

There are several ways how a complete MOLA TEE can be built because it must
have close links with the supplier/consumer of models – a modeling environment.
One of the ways is to use MOLA TEE as a plug-in for a modeling tool, with model
data being exchanged in XMI format. It is sufficiently easy in the case of Eclipse and
EMF [18] based tools. In [16] it is described in sufficient detail, how MOLA TEE can
be used as a plug-in for the commercial IBM Rational modeling tool RSA. It should
be noted that this approach requires at least one of the models (source or target) to be
in standard UML 2.0.

Another approach, which is more relevant to the goals of this paper, is to use a
generic modeling environment where an arbitrary graphical modeling notation can be
supported. Since the GMF environment [17] fulfills these requirements, a reasonable
solution is to link MOLA TEE to this environment. In GMF it is possible to define the
graphical presentation of a domain model as a sort of transformation (though not very
universal, see more in [17]), therefore for many modeling notations usable graphical
editors can be defined without proper programming at all. In addition, Eclipse EMF
style model tree browsers/editors, but more flexible ones (e.g., with several instances
combined in one tree node), can be built very easily with GMF. Thus a readable
visual representation of a model (source or target) can be obtained. This approach is

adequate for domain specific notations, including non-UML ones, where frequently
standard editing facilities simply are not available. Since the examples of this paper
are in this category, namely such an approach is used. It should be noted that a
somewhat similar approach is used for GReAT transformation language, combined
with the generic GME modeling environment [7].

To apply the approach, two visual editors (diagrammatic or model tree based) must
be defined in GMF for the source and target models respectively (if the source and
target is different). They are based on the same metamodels which are used to define
the model transformation in MOLA. Currently these metamodels must be ported
manually to the GMF environment (GMF metamodels are in a slight variation of
EMOF notation), but in the near future an automatic support will be provided. Then
the editor definitions must be provided (e.g., which "domain metamodel pattern"
maps to a presentation class, which pattern maps to a tree node etc., see more in [17]).
The GMF-based MOLA TEE contains universal metamodel-controlled instance
export and import components from/to GMF repository. The relevant MOLA
transformation can be invoked directly from the GMF environment (MOLA VM is
used as a GMF plug-in). The general schema of GMF based MOLA TEE is shown in
Fig. 1.

The outlined here approach will be demonstrated in section 5 for the mandatory
example – both tree-form and diagrammatic editors for source and target models will
be shown. The convenient graphical facilities for building source models are used to
test the correctness of defined MOLA transformations (see more in section 5).

Generic Modeling Framework (GMF)
(M1 level)

MOLA transformation
execution

Models
(PIM, PSM)

R
ep

os
ito

ry
 (r

el
at

io
na

l D
B

)

MOLA VM

Metamodels

MOLA Transformation
Definition

(MOLA program)

MOLA Transformation
Definition Environment

(MOLA TDE)

MOLA Transformation
Execution Environment

(MOLA TEE)

Generic Modeling Framework (GMF)
(M2 level)

MOLA
Compiler

MOLA
MM editor

MOLA
Diagram editor

Generic Modeling Framework (GMF)
(M2 level)

MOLA
Compiler

MOLA
MM editor

MOLA
Diagram editor

ModelEditor
Diagrammatic /Model tree based

Fig. 1. MOLA tool schema.

4 The mandatory example in MOLA

In this section we provide the MOLA solution for the mandatory model
transformation example. The example is taken literally as specified in the workshop
call for papers (CFP) [9]. However, the lately added to FAQ comment that subclasses
of persistent classes do not add new elements to the primary key is not used – we
permit primary attributes to be merged up to the persistent class. All diagrams of the
proposed MOLA solution are shown in Fig. 2 – 12.

4.1 Metamodel of the example

Fig. 2 shows the metamodel of the example. In MOLA source and target metamodels
(if different) must be combined in one class diagram. The upper region in Fig. 2 is the
source metamodel (simplified UML) and the lower one is the target (simplified SQL).
The regions are just graphical comments. All black associations are the original ones.

Source Metamodel (simplified UML)

Target Metamodel
(simplified SQL)Table

name : String

Classifier
name : String

Attribute
name : String
is_primary : Boolean PrimitiveDataType

Column
type : String
name : String

FKey
temp_name_pref ix : String[0..1]

Association
name : String

Class
is_persistent : Boolean

type
1

typed *

forw ard*

src 1

inherForw ard*

inherSrc *inherOw ner *

inherAttr*

ow ner
1

attrs*

0..1

mergedAttr
*

child* parent0..1

*

megedSrc 0..1

reverse*

dest 1

*

references
1

1

#classToTable 0..1

1

#attributeToColumn *

cols* foreignKey0..1

0..1

pkey * ow ner1

cols

*

ow ner1

fkeys
*

Fig. 2. The combined source and target metamodel in MOLA.

MOLA uses a slightly simplified EMOF syntax for metamodels. Association
multiplicities must be explicit in MOLA, therefore the default ones have been added.
Some role names for non-navigable ends also have been added (they are not
mandatory for transformations, but ease the instance management in MOLA
environment).

Associations in colors other than black have a special meaning in MOLA. The
green ones are temporary – they are not present in the source model, but built by
MOLA programs to store some intermediate relations. They are not also included in
the resulting model. The red ones are the mapping associations, typically they link
classes in source metamodel to target ones. They are built by MOLA programs, and
their role is similar to relations, e.g., in QVT-Merge language – to transfer the results
of high level transformations to subordinated ones and to facilitate the definition of
inverse transformations (they are retained in the resulting model).

Fig. 2 contains two intermediate relations between Class and Attribute and
between Class and Association – they are used to relate all (transitively)
inherited elements (according to the standard UML semantics) and all "transitively

merged-up" elements – as specified by the example requirements. See the section 4.2
and 4.3, how their use makes the transformations more readable. There are also two
mapping associations – from Class to Table and from Attribute to Column.
They serve as a "backbone" for defining the correspondence between the source and
target models, e.g., it is very convenient to find easy, whether a table for a class has
been built and namely which. A temporary attribute temp_name_prefix is also
added to Fkey class (certainly, with multiplicity 0..1) – to store a temporary string.
Actually, the role of all these additional metamodel elements is clearly visible when
transformations themselves are discussed, and normally they are added "on the fly"
during the transformation program design.

 4.2 The main program of transformation

Now the transformation itself as a set of MOLA programs is being described. We start
with the description of the main program, where the main principles of the proposed
solution can be seen. Fig. 3 shows the main MOLA program.

c: Class
{is_persistent=true}

t: Table
name:=@c.nameTransCloseInheritance()

c: Class t: Table

assoc: Association@c: Class

ProcessAssociation(@assoc:Association,@t:Table,"")

attr: Attribute@c: Class

ProcessAttribute(@attr:Attribute,@t:Table,"")

CompleteForeignKeys()

#classToTable

mergedAttr

megedSrc

#classToTable

Fig. 3. The main MOLA program of the transformation.

We start with some comments on the transformation algorithm. Inheritance-related
items 6 and 7 of the requirements specification [9], together with the specified
precondition on inheritance (persistent classes are topmost parents), suggest that it
would be convenient to process transitively the inheritance as the first step. More

precisely, for non-persistent classes the traditional UML inheritance semantics must
be applied, while for persistent classes the "transitive merge up" semantics must be
used. The results of this transitive closure for a non-persistent class can be stored by
means of temporary associations inherAttr (to all inherited attributes – including
the direct ones) or inherSrc (to exiting associations), and
mergedAttr/mergedSrc for persistent classes respectively. Namely this
inheritance processing is performed in the subprogram
TransCloseInheritance. In all the follow-up activities the appropriate
temporary associations are used instead of the original ones (attrs or src). It
should be noted that many "classical" UML tools (including Rose by IBM Rational)
process the inheritance namely this way – you can always see all inherited
attributes/associations of a class directly.

Now the comments on the MOLA program are given. We remind that MOLA
control flows have some similarity to UML activity diagram – the same Start/End
symbols are used. After the subprogram call for inheritance processing, the first
FOREACH loop starts. This loop builds an equally named table for each persistent
class – note the simple pattern consisting only of the loop variable (c:Class) itself
(with the attribute constraint expressing the persistence). An assignment expression in
MOLA can contain attributes from all elements in the same loop head (or rule),
prefixed by the element name. In addition to the Table instance, an instance of the
mapping association is also built.

The next loop actually again iterates over all persistent classes, but it has a
different pattern – formally, loop over all Class instances which have a link to a
Table instance (which is the same since such a link and instance have been built in
the previous loop). The reason why we use the other pattern now is that we want to
reference both the class (@c:Class) and its table (@t:Table) in the loop body.
And in turn, we couldn’t insert all the actions in this loop body into the first loop – we
want to build also foreign keys (in the nested subprograms), which reference another
table, and during the first loop it could happen that the target table is not yet built.

The body of this loop does the main job in the whole transformation. At the top
level, it consists of two nested loops – for each merged up Attribute (i.e., having
the temporary mergedAttr link to the current Class instance) invoke the
ProcessAttribute subprogram with appropriate parameters and for each merged
up exiting Association invoke the ProcessAssociation. Namely, the use of
mergedAttr and mergedSrc links (built by the TransCloseInheritance
subprogram) ensures the fulfilment of item 7 in the requirements specification – "the
resultant table should contain the merged columns from all of its subclasses". The
subprograms ProcessAttribute and ProcessAssociation are recursive –
they invoke themselves (indirectly), thus implementing the recursive definition of
names for target columns (and the recursive drill-down as such). The third (string)
parameter of these subprograms is the currently cumulated up name prefix – for the
top level invocation it is just empty string. The second parameter is the Table
instance to which the generated Column (if any) or FKey must be attached. These
subprograms actually implement rules 2, 3, 4, 5 of the requirements specification [9].

When the main job is done, there still remains something to do – foreign keys have
no columns. The reason, why we couldn't fill them up "on the fly" again is – an FK

must have columns corresponding to all columns of the referenced PK, and that PK
could yet be undefined. So a separate subprogram CompleteForeignKeys
completes the job.

4.3 The principal subprograms of the transformation

In this section we analyze the principal subprograms of the transformation:
ProcessAttribute, ProcessAssociation, BuildColumn,
BuildForeignKey and ProcessNonPersistent, which jointly perform the
recursive drill-down of attributes and associations for a class. We start with the
ProcessAttribute (Fig. 4). It has three parameters – the attribute to be
processed, the table to which to add the result and the cumulated name prefix (string).

@attr: Attribute tp: PrimitiveDataType

@attr: Attribute cp: Class
{is_persistent=true}

BuildColumn(@attr:Attribute,@t:Table,@namePref)

BuildForeignKey(@cp:Class,@t:Table,@namePref+@attr.name+"_")

@attr : Attribute
[1]

@t : Table
[2]

@namePref : String
[3]

@attr: Attribute cnp: Class
{is_persistent=false}

ProcessNonPersistent(@cnp:Class,@t:Table,@namePref+@attr.name+"_")

type

type

type

{ELSE}

{ELSE}

Fig. 4. ProcessAttribute subprogram.

This relatively straightforward subprogram implements items 3, 4 and 5 of the
specification [9], by invoking the relevant subprograms. It contains no loops, but only
rules. The first rule acts as a precondition for the item 3 – "an attribute has a primitive
data type", therefore its unmarked (positive) exit leads to BuildColumn with
appropriate parameters. If the pattern fails (the attribute's type is not primitive) the
ELSE exit is taken. Similar graphical if-then-else constructs implement the other two
cases (build foreign key if the type is a persistent class, invoke recursive processing of
a non-persistent class). In both these cases the name prefix is prolonged – current
attribute name added to it.

The ProcessAssociation subprogram (Fig. 5) is quite similar, except that
only two cases are possible (there is no direct column generation from an association).

@assoc: Association cp: Class
{is_persistent=true}

BuildForeignKey(@cp:Class,@t:Table,@namePref+@assoc.name+"_")

ProcessNonPersistent(@cnp:Class,@t:Table,@namePref+@assoc.name+"_")

@nam ePref : String
[3]

@t : Table
[2]

@assoc : Association
[1]

@assoc: Association cnp: Class
{is_persistent=false}

dest
{ELSE}

dest

Fig. 5. ProcessAssociation subprogram.

The BuildColumn (Fig. 6) subprogram is also quite simple, it contains only rules
for building instances (the ELSE exit of the first rule is semantically impossible; if the
pattern does not match for the second rule the default program end is used).

tp: PrimitiveDataType

@t: Table
col: Column
name:=@namePref+@attr.name
type:=tp.name

@attr: Attribute

@t : Table
[2]

@attr : Attribute
[1]

@nam ePref : String
[3]

@col: Column @t: Table@attr: Attribute
{is_primary=true}

type

#attributeToColumn

cols

pkey

Fig. 6. BuildColumn subprogram.

In addition to building a column (using both the prefix and the current attribute), a
primary attribute enforces the column to be included into the PK list.

Similarly, the BuildForeignKey subprogram (Fig. 7) contains a rule for
building a foreign key, together with its reference to the target (note that the required
dt:Table instance now exists for sure).

dt: Table

fk: FKey
temp_name_pref ix :=@namePref

@t: Table@cl: Class

@nam ePref : String
[3]

@t : Table
[2]

@cl : Class
[1]

#classToTable references

fkeys

Fig. 7. BuildForeignKey subprogram.

The final subprogram in this set is ProcessNonPersistent (Fig.8), which
completes the recursion (item 2 in the requirements [9]) for a non-persistent class (by
processing all its inherited attributes and exiting associations).

attrN: Attribute
@cnp: Class

ProcessAttribute(@attrN:Attribute,@t:Table,@namePref)

@t : Table
[2]

@cnp : Class
[1]

@namePref : String
[3]

assoc: Association
@cnp: Class

ProcessAssociation(@assoc:Association,@t:Table,@namePref)

inherAttr

inherSrc

Fig. 8. ProcessNonPersistent subprogram.

4.4 Other subprograms of the transformation

We start with the TransCloseInheritance subprogram (Fig. 9), which was
already mentioned in 4.2. Its role is extremely simple – for non-persistent classes

perform ProcessInheritance, but for persistent – ProcessMerge (it was
already explained in 4.2, why the specification implies such division). Both these
subprograms process parent links recursively, therefore the "initial calls" to them
have both parameters set to reference the current class (a class attribute is also an
inherited attribute and so on). Alternatively, there could be one loop iterating over all
classes, but with an if-then-else in the body.

ProcessInheritance(@cl:Class,@cl:Class)

cl: Class
{is_persistent=false}

ProcessMerge(@cl:Class,@cl:Class)

cl: Class
{is_persistent=true}

Fig. 9. TransCloseInheritance subprogram.

Subprograms performing the real transitive closure – ProcessInheritance (Fig.
10) and ProcessMerge (Fig. 11) are very similar – the former iterates up via
parent link, the latter – down. However, the difference in closure semantics implies
some difference in programs. For inheritance, an attribute must not be inherited if
there already is an (inherited) attribute with the same name. This fact is expressed by
(the only one in the whole example) NOT constraint in the attr:Atribute pattern
element – the instance of attrsup:Attribute doesn't match, if there is an
instance of Attribute linked via inherAttr to the same Class and having a
name equal to attrsup name.

Since the "up" multiplicity of parent is 0..1, there is no loop involving the
recursive call, but just an if-then-else branch.

@cl: Class @supcl: Class

attrsup: Attribute

{NOT}
attr: A ttribute
{name=attrsup.name}

ProcessInheritance(@cl:Class,@supsupcl:Class)

assoc: Association @supcl: Class@cl: Class

@supcl: Class supsupcl: Class

@supcl : Class
[2]

@cl : Class
[1]

attrs

inherAttr

parent
{ELSE}

src

inherAttr

inherSrc

Fig. 10. ProcessInheritance subprogram.

@cl : Class
[1]

@subcl : Class
[2]

@subcl: Classattr: Attribute@cl: Class

assooc: Association@cl: Class @subcl: Class

@subcl: Class subsubcl: Class

ProcessMerge(@cl:Class,@subsubcl:Class)

parent

attrs

src

mergedAttr

megedSrc

Fig. 11. ProcessMerge subprogram.

The ProcesMerge subprogram is simpler – there is no overriding in the merge
definition. On the other hand, the "down" multiplicity of the parent link is *,
therefore the recursive call is within a loop.

Finally, the CompleteForeignKeys subprogram does a simple job – it runs
through all foreign keys and for each builds a set of columns (one for each column of
the relevant primary key), using the name prefix, temporarily stored in FKey by the
BuildForeignKey subprogram. Then the temporary attribute is cleared.

ow nt: Table ref t: Tablefk: FKey

@ow nt: Table

fcol: Column
name :=@ fk.temp_name_pref ix
+kcol.name
type :=kc ol.type

kcol: Column@ref t: Table

@fk: FKey

@fk: FKey
temp_name_pref ix :=""

fkeys referenc es

pkey

cols cols

Fig. 12. CompleteForeignKeys subprogram.

This completes the mandatory example in MOLA.

4.5 Analysis of the example implementation

Certainly, the same way there is no one absolutely best implementation of OrderEntry
subsystem for MySales, there is no absolutely best implementation of a
transformation. Any analysis is subjective to a degree.

Authors themselves consider this implementation of the mandatory example a very
nice application of MOLA. It seems to be very readable and clear (readability is
subjective too!), no missing feature of the MOLA language has been found. It seems
also that a certain optimum has been reached between the use of graphical patterns in
loops and rules and purely programmatic constructs (sometimes one can replace
another). It should be noted that only relatively recently the role of Recursive Call
pattern in MOLA has been fully estimated. Though recursive calls have been
permitted from the beginning, early examples of MOLA [11,14] all try to use only
pure iteration for a very similar "drill-down" transformation, which makes the

implementation more clumsy. It should be noted, that recursive calls could be used
even more deeply – inherited (or merged) attributes or associations could be
recursively found each time they are needed for the drill-down, but this was
considered to be an overuse of recursion reducing the clarity. Namely therefore the
temporary associations completely separating the processing of inheritance and drill-
down were introduced. The recently introduced true if-then-else construct also makes
the transformation behavior description clearer.

It is nearly impossible to compare textual transformation languages (textual QVT-
Merge, ATL, MTL et al) to MOLA – simply each style has its proponents. The
textual definitions are, certainly, much shorter but we consider them significantly less
readable and consequently, more error prone. It should be noted that this example was
intentionally completed without the use of MOLA TEE, using only manual "code
inspections". Then it was subjected to proper testing via MOLA TEE, and only one
error was found. Taking into account that published textual transformation examples
contain bugs frequently enough it seems that more sizeable transformation definitions
in MOLA pay off.

A more fair would be comparison to other graphical transformation languages
(graphical QVT-Merge, FUJABA SDM, GReAT). Authors have not performed any
direct comparisons due to unavailability of respective environments for these
languages. Some indirect comparison could be made only to the graphical QVT-
Merge, where the latest proposal document [1] contains a unidirectional
transformation example, similar to this workshop example (but having some
significant differences). An equivalent functionality seems to be definable more
compactly in QVT-Merge than in MOLA. But since the only control structure in
QVT-Merge governing rules actually is a recursive call (via the Where and When
constructs), this notation seems to be much harder to read and understand. This fact
was confirmed to a certain degree via experiments involving master students in CS.

So it is up to users to decide which transformation definition facilities are better.

5 Use of MOLA TEE for the example

When a transformation is defined in MOLA (using the MOLA TDE) it can be
compiled to check its syntax. However, a proper transformation validation can be
done only using source model test examples within the MOLA TEE. Only the GMF-
based version (see section 3) can be used for the example, since its metamodel is not
part of the standard UML. As it was outlined in section 3, some visual facilities for
building source models and viewing the transformed target models must be defined in
GMF.

Initially the MOLA metamodel (combined) must be ported into the GMF
metamodeling facility. In the case of the simple metamodel for the example (Fig.2)
this could be done without any complexities (namely to facilitate the porting some
role names were already added to the metamodel).

At first the simplest way of instance visualization – via customized model trees
will be demonstrated. This approach is similar to the generated from a (meta) model
tree and editor set in Eclipse EMF [18], but is significantly more flexible. For
example, we can chose to represent a Class instance as a node, which shows the

name, persistence and possible parent (the latter ones with keyword style separators to
distinguish, which of the values are present). Then we can specify that child nodes of
this node correspond to Attribute instances of the class (i.e., accessible via
attrs link), each node showing the name, type and "primarity". Additional node
type can be defined for associations, containing name plus source and target class
names. Primitive types also must be shown as nodes. In addition, customized object
dialogs can be defined for the main metaclasses (here Class and Association,
with attributes as elements inside the Class dialog). GMF has also default object
dialogs (like property editors in EMF), but they can be not so convenient for use. Fig.
13 shows the example tree in GMF (according to the abovementioned definitions),
which corresponds to the input example – Fig. 3 from the workshop CFP. Parent is
empty everywhere since there is no inheritance in this example (there is no way to
remove the separator if the value is empty).

Fig. 13. Input example in GMF.

Similarly, tree nodes for the target model must be defined. Here the sole top level
node should be Table, showing the name. It has two types of children – columns and
foreign keys. Column nodes display name, type and whether part of PK. For both
table and column nodes it can be shown from which source model elements they were
generated (via the mapping associations), visually separated by ":<-" string – this is
an element of explicit traceability. For foreign key nodes the referenced table may be
shown, with included columns as children nodes.

Now it remains to export the instance data (source model) from GMF repository to
MOLA runtime repository, start the selected transformation and import back the
transformed model to the GMF repository. All these actions have been added as
standard services to GMF. Fig. 14 shows what was obtained from the source model in
Fig. 13.

Fig. 14. Transformation results in GMF (obtained from data in Fig. 13).

It can be easily verified, that the results do comply with the Fig. 4 in the CFP [9]
(columns which are not PK show the empty ",PK for " separator, columns which
are not direct maps of source model attributes, show empty ":<-" string). Namely this
way the sole transformation error was detected – the underscore symbol in names
initially was placed wrongly.

Certainly, to validate the defined transformation to a certain degree, much more
test examples would be needed, e.g., inheritance is not tested at all. Larger examples
can be built via this visualization for sure, but we want to demonstrate briefly the
other possibility in GMF – present models as custom diagrams. Both the source and
target metamodels of the example satisfy "GMF diagramming" requirements, only a
special metaclass (representing a "domain diagram") must be added to each. This
requires also one "technical subprogram" to be added to the transformation end – the
domain diagram instance must also be built automatically. All these "scaffolding
activities" in no way affect the original models or transformation. Fig. 15 shows the
source model represented as a slightly non-standard class diagram – according to the
assumed metamodel. Additional metaattributes (is_persistent, is_primary)
are displayed as tagged values. Definition of this diagram-style presentation is more
complicated, it must be specified, e.g., that Class maps to an auxiliary metamodel
element ClassSymbol, which in turn has a rectangular shape and contains three
text compartments one of which (for attributes) is a list compartment. Thus a sort of
model transformation (domain to presentation) actually is defined in GMF, more
details can be found in [17]. The definition result is a "normal" graphical editor for
this variation of class diagrams, with standard facilities to be found in diagramming
tools. The example in Fig. 15 (built via this editor) is a slightly adapted advanced case
study (Fig. 5 in CFP), which was not meant to be used for the strict transformation
rules of the mandatory example (therefore the results will be slightly unexpected).
The adaptation had to be done to satisfy the preconditions on class models.
Nevertheless it is a good test for the transformation – many "use cases" can be
observed on it.

DocRef
Pers is t: false

XREF
Pers is t: true
no : Integer

Telephone
Pers is t: false
office : String
private : String

Document
Pers is t: true
title : String
num ber : Integer PK:true
author : String

OfflineDoc
Pers is t: false
archive : String

OnlineDoc
Pers is t: false
form at : String
contents : Blob

ProdRef
Pers is t: false

ProdGroup
Pers is t: true
nam e : String
id : Integer PK:true

Product
Pers is t: true
nam e : String
num ber : Integer PK:true

Employee
Pers is t: false
shortnam e : String

Customer
Pers is t: false
com pany : String

User
Pers is t: true
nam e : String PK:true
login : String PK:true

m as ter

referencedBy

phone

respons ible

referenceDoc

group

m anager

referenceProd

Fig. 15. Complicated input example as a GMF class diagram.

Transformation results frequently also can be displayed as a diagram, in this case an
"RDBdiagram" (somewhat similar to Fig. 6 in CFP [9]) is defined. Tables are
presented as rectangles showing columns in a list compartment, separate
compartments present members of PK and the reference for each of the FKs. The
columns included in an FK are shown as a list attached to the line representing this
FK (unfortunately, FKs have no names in this transformation). When the
transformation is run on the example and the transformed instances imported back
into GMF, the diagram itself is displayed automatically via the GMF auto-layout
facility.

Fig. 16 shows the result of transformation when applied to the model in Fig. 15. It
can be noted that only persistent classes result into tables, but inheritance and drill-
down generate a lot of new columns – according to the transformation specification.
No transformation program errors were detected in this test, which can be considered
as an exhaustive enough (though authors have not tried to apply any formal testing
completeness criteria). The only conclusion is that in practice more sophisticated
transformations from class models to RDB should be used.

Product
group_id : Integer
num ber : Integer
nam e : String
group_m anager_login : String
group_m anager_nam e : String
PK: num ber
FK to ProdGroup

ProdGroup
m anager_phone_private : String
m anager_phone_office : String
m anager_shortnam e : String
nam e : String
id : Integer
m anager_nam e : String
m anager_login : String
PK: id,m anager_nam e,m anager_
login

XREF
referenceDoc_num ber : Integer
referenceDoc_m as ter_num ber : Integer
referenceProd_num ber : Integer
referencedBy_num ber : Integer
referencedBy_m aster_num ber : Integer
no : Integer
FK to Product
FK to Docum ent
FK to Docum ent

User
shortnam e : String
com pany : String
nam e : String
login : String
phone_office : String
phone_private : String
PK: nam e,login

Document
m aster_respons ible_nam e : String
m as ter_respons ible_login : String
respons ible_nam e : String
respons ible_login : String
author : String
m as ter_title : String
m as ter_num ber : Integer
m as ter_author : String
m as ter_archive : String
title : String
num ber : Integer
form at : String
contents : Blob
archive : String
PK: m aster_num ber,num ber
FK to User
FK to User

group_id,group_manager_name,
group_manager_login

master_responsible_name,
master_responsible_login

responsible_name,
responsible_login

referenceDoc_number,
referenceDoc_master_number

referencedBy_number,
referencedBy_master_
number

referenceProd_number

Fig. 16. The transformation result as an RDB diagram.

6 The optional example – nondeterministic FSM to deterministic

In this section we briefly describe one more example – the transformation of a
nondeterministic automaton (FSM) to a deterministic one. Automata are assumed to
be language recognizers (no output), a nondeterministic one can have many initial
states and many final states, a string belongs to the language if there is a path from an
initial to a final state marked by this string (empty or lambda moves are not included).
Thus a simplest possible definition is assumed. For deterministic automaton the
standard language recognizer definition is used. Automata are defined as sets
consisting of state, event (=input alphabet element) and transition instances. The
classical determinization algorithm is implemented – explore the state powerset (set
of all subsets) space, by starting from the "initial set" and trying to expand the
reachable set of statesets by applying transitions for all possible events and analyzing

whether a new stateset has been reached by the given event (or it is a copy of existing
one). When nothing more can be reached, the reached powerset elements are coded as
new states of the deterministic FSM, and new transitions are defined accordingly, as
well as the initial state and final states.

Fig. 17 shows the metamodel (source = target), with the StateSet class used
during the algorithm run. Fig. 18 – 22 show the main MOLA program and
subprograms implementing the abovementioned algorithm. Some of the subprograms
use additional MOLA elements not used in the main example.

Transition

Counter
currId : Integer

Event
name : String

StateSet
name : String
size : Integer

State
name : String
isInit : Boolean
isFinal : Boolean

SetTransition

out
*src

1
trans*

event 1

setTrans

event
container *

element*

src
1 out

*

dst
1 in

*

dst
1

in*

Fig. 17. Metamodel of automatons.

FindInitialSet()

ev: Event

destset: StateSet
name:="temp"

BuildDestSet(@ev:Event,@set:Stateset,@destset:StateSet)

IdentifySet(@ev:event,@set:StateSet@destset:StateSet)

set: StateSet

BuildDetFSM()

Fig. 18. Main MOLA program for the determinization.

st: State
{isInit=true}

@inset: StateSet

inset: StateSet
name:="Initial"

cnt: Counter
currId := 1

container

Fig. 19. Subprogram FindInitialSet.

@destset : StateSet
[3]

@ev : Event
[1]

@srcset : StateSet
[2]

trans: Transition

@ev: Event
@destset: StateSetdstst: State

@srcst: State

srcst: State @srcset: StateSetelement

src

event
dst element

Fig. 20. Subprogram BuildDestSet.

The next subprogram IdentifySet uses more complicated OCL expressions in
constraints – subexpressions of the form element_name.role_name, which
denote an instance set (if the multiplicity is *) and elementary OCL operations on sets
(here – the set equality). Two special control constructs – explicit continue (flow to
the loop border) and return (flow to end symbol) are used in the first loop.

@res: Counter
currId:=currId+1

@srcset : StateSet
[2]

@ev : Event
[1]

@tem pset : StateSet
[3]

set: StateSet
{name<>"temp"}

@set: StateSet
@tempset: StateSet
{self .element = @set.element}

settr: SetTransition

@ev: Event

@set: StateSet

@tempset: StateSet

@srcset: StateSet

settr: SetTransition

@ev: Event@srcset: StateSet

@tempset: StateSet
name:="State"+toString(@cnt.currId)

cnt: Counter

{ELSE}

src event

dst

src

event

dst

Fig. 21. Subprogram IdentifySet.

The subprogram BuildDetFSM also uses OCL set operations in constraints –
notEmpty and the quantifier exists.

dstset: StateSettransit: SetTransitionsrcset: StateSet

dstst: State
{name=dstset.name}new trans: Transition

srcst: State
{name=srcset.name}

stset: StateSet new state: State
name := stset.name

@new state: State
isInit :=true

@stset: StateSet
{self .element->notEmpty() and
self .element->exists (st | st.isFinal=true)}

@stset: StateSet
{name="Initial"}

@new state: State
isFinal :=true

{ELSE}

dst

src

{ELSE}

src

dst

Fig. 22. Subprogram BuildDetFSM.

Authors consider this example also a right balance between the textual and graphical
style of transformation specifications. Namely to make the example maximally
readable, explicit sets defined via associations from an instance and OCL set
operations are used in patterns. Certainly, the example could be specified "100%
graphically", using nested loops, but this seems not to be the best choice. The
extended use of OCL is not yet implemented in MOLA VM, therefore the example
has not been validated in MOLA TEE.

6 Conclusions

The description of the implementation of the mandatory transformation example in
MOLA (in section 4) provides, according to the authors' view, a good style of a
graphical transformation definition. The increased size of the solution is compensated
by a better readability, which in turn ensures that less effort for the transformation

development is required and it is less error prone. The latter fact to a certain degree
has been confirmed by a controlled experiment – developing the transformation and
only then testing it. The MOLA execution environment, based on GMF, also occurred
to be very fit for building test models and executing the transformation on them. Thus
the practical transformation validation, using the facilities to build/view models in a
graphical form, appeared to be completely satisfactory. The optional example, in turn,
demonstrates that graphical pattern definition facilities should not be overused – they
can naturally be combined with the use of OCL in MOLA element constraints.

Certainly, there are more problems in practical transformation development. First,
the transformation composition is more the tool than language issue – in MOLA
environment, for sure, it is possible to apply consecutively several transformations
while the model data are in the runtime repository (certainly, if the metamodels are
consistent to this). Bidirectional or incremental transformations certainly don't come
for free in MOLA because it is an outspokenly procedural language. Reverse or
incremental transformations must be developed specially with the goal in mind, but
some experiments show that MOLA pattern features are powerful enough to
implement the relevant source-target relations easily. It is especially easy if the
mapping associations are used adequately for the direct transformation, e.g., it can be
easily detected in the example that a new Table has been added to the target model
which has no link to its Class. To sum up, the MOLA language seems to meet all
the main transformation technology requirements, certainly, the existing MOLA tool
will be extended to meet all the aspects of practical usability.

References

[1] QVT-Merge. URL: http://www.omg.org/docs/ad/05-03-02.pdf
[2] ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/
[3] MTF. URL: http://www.alphaworks.ibm.com/tech/mtf
[4] Tefkat. URL: http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
[5] Tratt L. “The MT model transformation language”. Technical report TR-05-02, Department

of Computer Science, King's College London, May 2005.
[6] Fujaba User Documentation.

URL: http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
[7] Agrawal A., Karsai G, Shi F. “Graph Transformations on Domain-Specific Models”.

Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-
403, 2003

[8] The Attributed Graph Grammar System (AGG). URL: http://tfs.cs.tu-berlin.de/agg/
[9] Model Transformations in Practice Workshop. Call for papers (CFP).

URL: http://sosym.dcs.kcl.ac.uk/events/mtip/long_cfp.pdf
[10] Graphical Modeling Framework (GMF, Eclipse technology subproject).

URL: http://www.eclipse.org/gmf/
[11] A. Kalnins, J. Barzdins, E. Celms. “Model Transformation Language MOLA”.

Proceedings of MDAFA 2004 (Model-Driven Architecture: Foundations and Applications
2004), Linkoeping, Sweden, June 10-11, 2004. pp.14-28.

[12] Kalnins A., Barzdins J., Celms E. “Model Transformation Language MOLA: Extended
Patterns”. Selected papers from the 6th International Baltic Conference DB&IS’2004, IOS
Press, FAIA vol. 118, 2005, pp. 169-184.

[13] A. Kalnins, J. Barzdins, E. Celms. “Basics of Model Transformation Language MOLA”.
ECOOP 2004 (Workshop on Model Transformation and execution in the context of MDA),
Oslo, Norway, June 14-18, 2004. URL: http://heim.ifi.uio.no/~janoa/wmdd2004/papers/

[14] A. Kalnins, J. Barzdins, E. Celms. “MOLA Language: Methodology Sketch”. Proceedings
of EWMDA-2, Canterbury, England, 2004. pp.194-203.

[15] MOF 2.0 Core Final Adopted Specification.
URL: http://www.omg.org/docs/ptc/03-10-04.pdf

[16] A. Kalnins, E. Celms, A. Sostaks. “Tool support for MOLA”. (Preliminary version).
GPCE'05. Paper accepted to the workshop on Graph and Model Transformation (GraMoT),
Tallinn, Estonia, September 2005

[17] E. Celms, A. Kalnins, L. Lace. “Diagram definition facilities based on metamodel
mappings”. Proceedings of the 18th International Conference, OOPSLA’2003 (Workshop
on Domain-Specific Modeling), Anaheim, California, USA, October 2003, pp. 23-32.

[18] UML 2.0 Eclipse EMF. URL: http://www.eclipse.org/uml2/
[19] Microsoft SQL Server 2000 Desktop Engine (MSDE 2000).

URL: http://www.microsoft.com/sql/msde/default.asp

	2 Brief Description of MOLA Language
	3 MOLA support tools
	4 The mandatory example in MOLA
	5 Use of MOLA TEE for the example
	6 The optional example – nondeterministic FSM to determinist
	6 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B103C503C403AD03C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003C003C103BF03B503BA03C403CD03C003C903C303B7002003C503C803B703BB03AE03C2002003C003BF03B903CC03C403B703C403B103C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002C0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E00290020039F03B9002003C103C503B803BC03AF03C303B503B903C2002003B103C503C403AD03C2002003B103C003B103B903C403BF03CD03BD002003B503BD03C303C903BC03AC03C403C903C303B7002003B303C103B103BC03BC03B103C403BF03C303B503B903C103AC03C2002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B062706260642002000500044004600200628062F0642062900200635064806310020063906270644064A062900200645064600200623062C06440020062C0648062F06290020063906270644064A062900200644064406370628062706390629002006330627062806420629002006270644064606340631002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E0020062A062A06370644062800200647063006470020062706440636064806270628063700200625062F06310627062C002006440644062E0637002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000700072006F0020006B00760061006C00690074006E00ED002000700072006500700072006500730073002000610020007400690073006B002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E0020005400610074006F0020006E006100730074006100760065006E00ED002000760079017E006100640075006A00ED00200076006C006F017E0065006E00ED0020007000ED00730065006D002E000D000AFEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000700072006F0020006B00760061006C00690074006E00ED002000700072006500700072006500730073002000610020007400690073006B002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E0020005400610074006F0020006E006100730074006100760065006E00ED002000760079017E006100640075006A00ED00200076006C006F017E0065006E00ED0020007000ED00730065006D002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E90074007200650020006B0069007600E1006C00F30020006D0069006E0151007300E9006701710020006E0079006F006D00640061006900200065006C0151006B00E90073007A00ED007400E900730072006500200073007A00E1006E00740020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E00200045007A0065006B00680065007A0020006100200062006500E1006C006C00ED007400E10073006F006B0068006F007A00200062006500740171007400ED007000750073002D0062006500E1006700790061007A00E1007300200073007A00FC006B007300E9006700650073002E000D000AFEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E90074007200650020006B0069007600E1006C00F30020006D0069006E0151007300E9006701710020006E0079006F006D00640061006900200065006C0151006B00E90073007A00ED007400E900730072006500200073007A00E1006E00740020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E00200045007A0065006B00680065007A0020006100200062006500E1006C006C00ED007400E10073006F006B0068006F007A00200062006500740171007400ED007000750073002D0062006500E1006700790061007A00E1007300200073007A00FC006B007300E9006700650073002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0020007700690119006B0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F3007700200064006C00610020006E0061015B0077006900650074006C0061006E006900610020007700790073006F006B00690065006A0020006A0061006B006F015B00630069002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E00200055007300740061007700690065006E00690061002000740065002000770079006D006100670061006A01050020006F007300610064007A0061006E0069006100200063007A00630069006F006E0065006B002E000D000AFEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0020007700690119006B0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F3007700200064006C00610020006E0061015B0077006900650074006C0061006E006900610020007700790073006F006B00690065006A0020006A0061006B006F015B00630069002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E00200055007300740061007700690065006E00690061002000740065002000770079006D006100670061006A01050020006F007300610064007A0061006E0069006100200063007A00630069006F006E0065006B002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F00200432044B0441043E043A043E0433043E0020043A04300447043504410442043204300020043F044004350434043204300440043804420435043B044C043D044B04450020043E0442043F0435044704300442043A043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E000D000AFEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F00200432044B0441043E043A043E0433043E0020043A04300447043504410442043204300020043F044004350434043204300440043804420435043B044C043D044B04450020043E0442043F0435044704300442043A043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF005900FC006B00730065006B0020006B0061006C006900740065006C00690020006200610073006B0131002000F6006E0063006500730069002000E70131006B0131015F006C006100720020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E002900200042007500200061007900610072006C0061007200200066006F006E00740020006B006100740131015F007401310072006D00610073013100200067006500720065006B00740069007200690072002E000D000AFEFF005900FC006B00730065006B0020006B0061006C006900740065006C00690020006200610073006B0131002000F6006E0063006500730069002000E70131006B0131015F006C006100720020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E002900200042007500200061007900610072006C0061007200200066006F006E00740020006B006100740131015F007401310072006D00610073013100200067006500720065006B00740069007200690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

