
The Transformation-Driven Architecture

Janis Barzdins Sergejs Kozlovics Edgars Rencis
Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, LV-1459, Riga, Latvia
{janis.barzdins, sergejs.kozlovics, edgars.rencis}@lumii.lv

Abstract
This paper proposes a new system building (in particular, tool
building) approach, which we call Transformation-Driven Archi-
tecture (TDA). The basic elements used in this architecture are
model transformations, interface metamodels with corresponding
engines, and event/command mechanism. The implementation of
the UNDO functionality in TDA is also sketched in this paper.

Keywords model transformations, metamodels, events, com-
mands, UNDO

1. Introduction
The increasing popularity of domain-specific languages influenced
the appearance of metamodel-based tools such as MetaEdit+ [1],
Eclipse GMF [2], AToM3 [3], Microsoft DSL Tools [4], Dia-
Gen/DiaMeta [5], Pounamu [6], Marama [7], METAclipse [8], and
GrTP [9]. Usually, the interaction between the domain and the pre-
sentation model is the cornerstone of such tools. The link between
these two models may be established by static-mapping approach
or by model transformations. However, presentation model is not
yet the end product that can be shown to the user. This model should
be processed by some engine and displayed in the appropriate form
(for instance, as a diagram) to the user. Thus, we get the structure
shown in Fig. 1.

According to the Model-View-Controller (MVC) [10] architec-
tural pattern, the domain can be viewed as a model, the presenta-
tion — as a view, and the processes that map them — as a con-
troller. If the model and the presentation do not communicate di-
rectly, but by means of model transformations, the analogy with
the Three-tier-architecture [11] can be noticed. The model corre-
sponds to the data tier, the presentation — to the presentation tier,
and the transformations — to the application (or logic) tier. Some
other analogies with the Three-tier architecture may also be noticed
(see triple-lines in Fig. 1).

In this paper we will go further. The structure from Fig. 1
can be extended by adding additional presentation metamodels
and the corresponding engines. The logic that links the domain
with all the presentations can be implemented by means of model
transformations. In this way a new system building approach arises,
which we call Transformation-Driven Architecture (TDA).

The following differences between TDA and the approaches
used in the abovementioned tools could be realized. Most of the
tools have only one presentation that is handled globally by the
platform. TDA, in its turn, allows using several different presenta-
tions, and each of them can be handled independently by the cor-
responding engine. Another difference is the wide usage of model
transformations in TDA. Transformations can be used not only for
linking the domain to one or more presentations, but also for ex-
changing data between different presentations.

TDA allows transformations to communicate with engines by
means of commands and events. Commands are used when engines

are called by transformations, while events are used when transfor-
mations are called by engines. This differs from the approach used
in METAclipse [8], where only events1 are used: when some pre-
sentation event occurs, the platform creates the corresponding ob-
ject X in the repository and calls the transformation. The transfor-
mation may return certain kind of information back to the platform
through the same object X . In this approach the transformation is
not able to access the platform’s functionality directly: it has to use
the object X . TDA doesn’t have this limitation since both events
and commands are used. Not only engines may call transforma-
tions, but also transformations are allowed to call engines, which,
in their turn, may call other transformations, and so on.

The paper is structured as follows. The next section lists some
assumptions setting the background for the explanation of the TDA.
Sect. 3 depicts the idea of the TDA and explains the collaboration
between transformations and engines. Sect. 4 sketches the solution
for implementing the UNDO functionality being a certain issue,
which is not implemented (or implemented by storing/loading the
model, which is slow) in some tools. In TDA this problem becomes
more complicated since not only transformations but also engines
have to undo their actions. Although we don’t present the whole
solution here, we show that the UNDO implementation is possible
in TDA. Finally, Sect. 5 concludes this paper.

2. Technical Assumptions for TDA
In this section we list some technical assumptions setting the back-
ground for the TDA. The assumptions are as follows.

• The data is stored in some repository (like EMF [12], JGraLab
[13] or Sesame [14]) with fixed API (Application Programming
Interface).
Motivation. Fixed API simplifies the way of accessing the
repository by engines or by transformations. Fixed API is
needed also for UNDO implementation.

• The API of the repository should be available for one or more
high-level programming languages (such as C++ or Java), in
which presentation engines will be written.
Motivation. This allows the engines to be able to exchange the
data with transformations through the repository.

• Model transformations may be written in any language (for in-
stance, any textual language from the Lx family [15] or the
graphical language MOLA may be used [16]). However, the
transformation compiler/interpreter should use the same repos-
itory API as the engines.
Motivation. This will simplify the UNDO implementation.

• When a transformation is called, its behavior depends only on
the data stored in the repository.
Motivation. This will also simplify the UNDO implementation.

1 They are called “commands” in METAclipse, while in our context they
play the role of events.



Figure 1. The chain between the end user presentation and the domain. Triple-lines show relations to the three-tier architecture.

If the transformations needs some internal variables, these vari-
ables may be stored in the repository as well.

• The metamodels do not change at runtime. All the changes in
the repository are at the instance-level.
Motivation. This is a simplification only. The changes at the
metamodel-level can be considered in the same way as changes
at the instance-level, if needed.

• Only one repository is used. Interaction between different
repositories as well as distributed data storage are not consid-
ered.
Motivation. This is also a simplification. A transparent super-
API over different/distributed repositories may be defined, if
needed.

• Only one module (transformation or engine) is allowed to ac-
cess the repository at the same time. Concurrency and locking
issues are not considered.
Motivation. On the one hand, concurrency and locking issues
are complex enough and require separate research. On the other
hand, most metamodel-based tools don’t have concurrent ac-
cess to the repository, and, usually, it is not so essential.

3. The Transformation-Driven Architecture
Fig. 2 shows a sample system that depicts the essence of the TDA.
The cloud in the center is the system metamodel that may be
divided into several parts. In our example, one can notice parts
called “Domain metamodel” and “Presentation metamodel”. The
presentation metamodel has the corresponding engine, and, in fact,
the whole chain from Fig. 1 can be found also in Fig. 2. There
are also other presentation metamodels (the dialog metamodel, the
database metamodel and the XML metamodel in our example) with
their engines. Each presentation metamodel can be considered as an
interface metamodel for the corresponding engine.

Let’s call the remaining part of the system metamodel (to which
the class “Command” belongs) the core part. The five parts men-
tioned above are linked to this core part, thus complementing it. The
core part also has its own engine called “Head engine”. The head
engine may be considered as an “operating system” (OS), and the
other engines as device drivers. The real functionality is performed
by model transformations that may be considered as programs.

3.1 How Does the System Work
In the beginning the control is gained by the head engine. It con-
structs the main window, where the user can open an existing
project or create a new one. In the first case the data is simply
loaded to the repository. In the second case the head engine calls
the corresponding transformation that fills the repository with some
initial data.

When the project has been initialized, each engine may generate
events, and the corresponding transformation being able to handle
this event is executed. Before calling the transformation, the engine

in which the event occurs creates an instance of the corresponding
“Event” subclass. The properties (attributes and links) of this in-
stance may be considered as arguments for the transformation.

While events are used to call transformations from engines,
commands are used for the opposite direction — to call engines
from transformations. When there is a need to call an engine, the
transformation creates a command and asks the head engine to
execute this command like a program may call an OS function to
get access to some device. The head engine determines which of
the engines must be called and passes the control to it. That is like
the OS passes the control to the corresponding device driver.

Each command is an instance of some “Command” subclass.
For example, a command for the Presentation Engine may be of the
type “PresentationCommand”. The presentation engine may have
several command types that are descendants of the class “Com-
mand” and that belong to the presentation metamodel, so the ap-
propriate type must be selected and the instance created (see also
[9]).

In order to execute the given command, the head engine checks
the type of the corresponding instance and determines the part of
the metamodel to which it belongs. After that the corresponding
engine is called.

While a command is being executed, events may be created
and transformations may be called. These transformations may also
create commands. While existing commands are being executed,
new commands have to be managed correctly. Thus, the appropriate
data structure is required to store the commands. We call it the
command queue, however, in reality it is a hybrid of the queue and
the stack.

3.2 The Command Queue
Assume that during execution of some command other commands
are not created. In this case the command queue is a real queue. Let
there be a fictive command EOC (“End of Commands”) denoting
the end of the command queue (EOC is the command after the last
real command). We assume there is a pointer to this EOC instance.
When a transformation needs to add a command, it finds the EOC
and inserts the new command just before the EOC by creating
the corresponding “previous”/“next” links. When the head engine
processes the queue, it finds the first command and executes the
commands starting from the first until the EOC is reached.

However, if execution of a command creates other commands,
the new commands should not be added to the end of the queue.
Fig. 3(a) depicts the point. Assume that during the execution of
command A the transformation, which adds additional commands
A1 and A2, is called. A is still being executed. So, A1 and A2

should be considered as parts of A. Thus, A1 and A2 have to be
executed before B, not after C as it would be if A1 and A2 were
added just before the EOC.

In order to solve this problem, we modify the command queue
slightly. Before starting to execute A, it is replaced by EOC, and



Figure 2. An example revealing the essence of the Transformation-Driven Architecture.

(a)

(b)

(c)

Figure 3. (a) A sample command queue. (b)–(c) While processing
command A two more commands are added — A1 and A2.

the EOC pointer is moved to this new EOC. Now, we can execute
A. If new commands need to be added, they are added before the
just created EOC, and, thus, also before B (see Fig. 3(b) and (c)).

So, the command queue is actually a stack of queues, where the
queues are separated by EOCs (see Fig. 4).

Figure 4. The structure of the command queue (the “stack of
queues”).

4. The Implementation of UNDO
An important question arises whether it is possible to implement
the UNDO functionality in TDA. It is worth to note that during
the UNDO not only a) the actions performed by transformations
have to be undone, but also b) the engines must be returned to the
corresponding states.

The answer to the question just mentioned is “Yes”. The prob-
lem a) can be solved by accessing the repository through the proxy
that manages the UNDO history. The problem b) is solved by intro-
ducing additional functionality that can be used to notify the proxy
when the engines change their states. We sketch these solutions be-
low.

In order to solve the problem a), some repository API functions
are hooked by the repository proxy. That is why the API has to be
fixed.

The repository API contains read-only functions (such as func-
tions for traversing the repository) as well as functions that modify
the repository (modificating functions). Modificating functions can
be divided into primitive and non-primitive ones. We assume the
following instance-level functions to be primitive:

• adding/deleting an instance;
• adding/deleting a link between two instances;
• changing the value of some attribute (property).

(We could select also certain metamodel-level routines if the meta-
model could be changed at runtime.) It is considered that non-
primitive modificating functions can be implemented by means of
primitive functions. For instance, the function for cascade delete
(that deletes the aggregate with its parts recursively) can be im-
plemented through calls to the function for deleting single instance
and to the function for deleting single link. This allows to handle all
repository changes by considering only primitive functions. Since
engines and transformations use the same API, hooking primitive
functions handles all the changes made in the repository.

When a primitive function is called, the information needed to
undo and also to redo the corresponding operation is being written
into the history. The history consists of transactions. Each trans-
action contains undo/redo information for several actions. Trans-
actions are started before certain events like “New box” or “New
line” events in the presentation engine.

The solution for the problem b) involves notifying the proxy
about the changes in the states of one or more engines. Each
engine may have several units for which UNDO can be called
independently. We call these units diagrams. For instance, there
may be several open graph diagrams managed by the Presentation
Engine. If the user had changed Diagram A before Diagram B,
then UNDO in Diagram A should not affect Diagram B (unless the
diagrams depend on each other). For each diagram the engine has
to know how to track the changes and to undo them. For instance, in
graph diagrams the coordinates of objects may be saved, and, when
UNDO is called, restored. The issues concerning what the diagram
is and how its states are saved and restored depend on the engine.



For UNDO we are interested not in engines, but in
diagrams that have been changed (since during the same
transaction some diagrams of the same engine may be
changed, and some may be left unchanged). The function
DiagramChanged(DiagramID, CurrentStateID) is used to
notify the proxy about diagram changes. The diagram is being
changed from the previous state to the state CurrentStateID.
DiagramChanged should also be called for each diagram to spec-
ify initial states in the beginning. It is assumed that the diagram
change corresponds to the current transaction. Thus, undoing this
transaction will return the diagram to the state before the change.

The list of other UNDO-related functions is presented below
(but without implementation details):

• CreateCheckPoint() — creates a new transaction; should be
called before certain events.

• CanUndo(DiagramID) — returns true iff the last transaction
that modified the given diagram can be undone.

• Undo(DiagramID) — undoes the last transaction where the
given diagram has been modified (let’s call this transaction T1).
Other transactions may also be undone. For instance, if another
diagram has been modified in T1 and also in transaction T2,
where T2 comes after T1, then T2 also needs to be undone.
Thus, other diagrams may need to change their states as well.
For that reason, Undo returns the list of diagrams and the corre-
sponding states.

• CanRedo(DiagramID) — returns true iff there was an undone
transaction where the given diagram has been changed. This
transaction can be redone.

• Redo(DiagramID) — acts similar to Undo, but in the opposite
direction.

• ClearHistory(DiagramID) — deletes from the history all
the transactions that affected the given diagram. Some other
transactions may also be deleted to keep the history consistent.

• ClearAllHistory() — clears all UNDO history.

In fact, functions for creating dependencies between trans-
actions may also be introduced. For instance, the function
ObjectMustExist(ObjectID) may be used to indicate that un-
doing the transaction where the given object has been created forces
undoing also the current transaction.

5. Conclusion
The main contribution of the paper is the idea of using several
presentation metamodels with the corresponding engines, where
the connection between all the metamodels (including the domain
metamodel) is ensured by model transformations. The command
queue has been introduced as the way of transferring control be-
tween transformations and engines. The basic ideas of the UNDO
implementation have also been presented with the aim to show that
such an implementation is possible. A detailed explanation and
comparison to other approaches for UNDO are subject to further
research.

In this paper, we haven’t addressed the problem of writing
model transformations to be used with TDA. One of the solutions
is to write transformations from scratch each time a new system is
being built. Another solution is to write a universal transformation,
which would handle many typical tasks arising in the tool building
process. A special tool definition metamodel may be introduced,
and the universal transformation may interpret instances of this
metamodel. This research topic is also of our interest.

Some ideas presented in this paper have been successfully im-
plemented in the recent version of transformation-based tool build-
ing platform GrTP [9]. There are two presentation engines (the
graph diagram engine and the dialog engine), which communicate

with model transformations by means of commands and events.
Commands are stored in the command queue, and there are cases
when the command queue has to be modified by introducing EOC
command (for instance, when one modal dialog calls another).
The transformation-driven architecture has proved to be powerful
enough to build an experimental tool — an editor for UML class
diagrams with profiles (stereotypes) and other advanced features.
Moreover, a graphical query tool for RDF databases has also been
built using this architecture [17].

It is a well-known fact that the development of presentation
engines is a very time-consuming process. That’s why it is done
only once in our approach. On the contrary, it is relatively easy to
write transformations working with metamodels. And this is the
basic profit we can achieve by means of TDA.

Acknowledgments
The authors would like to thank Karlis Cerans, Renars Liepins and
Sergejs Rikacovs for their help and suggestions.

References
[1] MetaEdit+, http://www.metacase.com
[2] A. Shatalin and A. Tikhomirov. Graphical Modeling Framework Archi-

tecture Overview. Eclipse Modeling Symposium, 2006.
[3] J. de Lara, H. Vangheluwe and M. Alfonseca. Meta-Modeling and

Graph Grammars for Multi-Paradigm Modeling in AToM3. Software and
System Modeling, 3(3), 2004., pp. 194-209.

[4] S. Cook, G. Jones, S. Kent and A. C. Wills. Domain-Specific Develop-
ment with Visual Studio DSL Tools, Addison-Wesley, 2007.

[5] DiaGen/DiaMeta. http://www.unibw.de/inf2/DiaGen/
[6] N. Zhu1, J. Grundy and J. Hosking. Pounamu: a meta-tool for multi-

view visual language environment construction. Proc. IEEE Sympo-
sium on Visual Languages and Human Centric Computing (VLHCC’04),
2004., pp. 254-256.

[7] J. Grundy, J. Hosking, N. Zhu1 and N. Liu. Generating Domain-
Specific Visual Language Editors from High-level Tool Specifications.
21st IEEE International Conference on Automated Software Engineer-
ing (ASE’06), 2006., pp. 25-36.

[8] A. Kalnins, O. Vilitis, E. Celms, E. Kalnina, A. Sostaks and J. Barzdins.
Building Tools by Model Transformations in Eclipse. Proceedings of
DSM’07 Workshop of OOPSLA 2007, Montreal, Canada, Jyvaskyla Uni-
versity Printing House, pp. 194-207.

[9] J. Barzdins et al. GrTP: Transformation Based Graphical Tool Building
Platform. Proceedings of MDDAUI‘07 Workshop of MODELS 2007,
Nashville, Tennessee, USA.

[10] T. Reenskaug. The Model-View-Controller (MVC). Its Past and
Present. JavaZONE, Oslo, 2003. JAOO, Arhus.

[11] Wayne W. Eckerson. Three Tier Client/Server Architecture: Achieving
Scalability, Performance, and Efficiency in Client Server Applications.
Open Information Systems 10, 1 (January 1995): 3(20).

[12] Eclipse Modeling Framework (EMF, Eclipse Modeling subproject),
http://www.eclipse.org/emf.

[13] S. Kahle. JGraLab: Konzeption, Entwurf und Implementierung einer
Java-Klassenbibliothek für TGraphen, Diplomarbeit, University of
Koblenz-Landau, Institute for Software Technology, 2006.

[14] Sesame. http://www.openrdf.org.
[15] J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs. Model Transformation

Languages and their Implementation by Bootstrapping Method. Pillars
of Computer Science, Springer LNCS, Vol. 4800, 2008., pp. 130–145.

[16] A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language
MOLA, Proceedings of MDAFA 2004 (Model-Driven Architecture:
Foundations and Applications 2004), Linkoeping, Sweden, pp. 14–28.

[17] G. Barzdins, E. Liepins, M. Veilande, M. Zviedris. Semantic Latvia
Approach in the Medical Domain. Proceedings of the 8th International
Baltic Conference (Baltic DB&IS 2008), Tallin, Estonia, pp. 89–102.


