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Abstract. Efficiency of pattern matching for MOLA model transformation language is analyzed in the 
paper. A virtual machine and pattern matching procedure based on it is proposed, which takes into 
account the specific requirements for efficient pattern matching in MOLA. On the basis of a typical 
MDA example it is shown that the proposed solution is optimal and the conclusions are generalized to 
typical MOLA programs. 

1. Introduction 
Model transformation languages are the main logical support for model driven 
software development (MDSD). Due to OMG initiatives, currently there are several 
proposals for model transformation languages, both as responses to OMG QVT RFP 
[1,2] or “independent” ones [3,4,5]. Among the independent languages there is also 
the MOLA language proposed by the authors of this paper [6,7,8]. The main 
distinguishing feature of MOLA is a natural combination of traditional structured 
programming in a graphical form, especially, the rich loop concepts with pattern-
based rules.  

A model transformation is applied to a source model – an instance set 
corresponding to the source metamodel and produces target model, corresponding to 
the target metamodel. The source model can be treated as an instance graph for the 
source metamodel – it consists of typed nodes – instances of metamodel classes and 
edges – links corresponding to metamodel associations.   

Model transformation languages – be they textual or graphical – contain rules 
based on pattern matching and control structures which govern the execution order of 
rules. It should be noted that facilities for defining pattern matching are quite similar 
from the semantics point of view for most of model transformation languages, 
including MOLA. Since pattern matching is performed in the source instance graph, 
which can be of quite substantial size, problems typical to graph transformation 
languages may appear, especially those of pattern matching efficiency. These 
problems e.g., for the graph transformation language Progress are discussed in [9]. 
The proposed solution there is an appropriate programming style. 

What refers to model transformation languages, the most thorough efficiency 
analysis has been done for GReAT language ([4], and especially, [10]). The main 
result there is that pattern matching can be made sufficiently efficient by passing 
already matched nodes from one pattern to another ("pivoting" and reusing). 
Certainly, this result relies significantly on the specific control structures (data flows, 
input and output ports) and semantics of GReAT. 

In this paper we try to solve the pattern matching problem for MOLA, relying on 
its specific control structures – loops. MOLA loops contain loop variables – pattern 
elements which must be matched to all possible relevant nodes in the source graph. At 
the same time the other pattern elements, according to MOLA semantics, must just 
have any one feasible match. There is also an observation (discussed in the paper to 
some detail) that in a correctly built MOLA program the match of any pattern element 
tends to be deterministic – thus typically leading to a simplified backtracking during 
the match. Another important fact is that nested loops in MOLA contain references to 



already matched elements in upper level loops. All this has led to the necessity to 
build a specific matching procedure for MOLA, which could be optimal namely in 
these circumstances. The paper proposes such a procedure, which in turn is based on a 
virtual machine for accessing source model elements and the MOLA program itself. 
In order to ascertain that the proposed solution is indeed efficient for MOLA, a typical 
benchmark example – class-to-relational database transformation (a MOLA program 
for which was proposed already in [8]) is analyzed from the complexity point of view. 
It is shown that both the program and the proposed MOLA implementation is optimal 
for this example – the number of virtual machine operations (which themselves are 
simple) is the best possible – proportional to the source model size.  

The main conclusion of the paper is that the example reveals a typical situation for 
MOLA and there are no efficiency problems expectable if adequate programming 
style and adequate pattern matching is used. Thus the proposed matching procedure 
and the sketch of virtual machine indeed can serve as the basis for MOLA 
implementation. 

Sections 3 and 4 of the paper describe the virtual machine and the pattern 
matching respectively. The example program is provided in section 5 and its 
performance analysis in section 6.    

2. Brief Overview of MOLA 
This section provides a very brief overview of MOLA syntax and semantics. A more 
complete description of MOLA language is given in [6,7]. 

A MOLA program, as any other transformation program, transforms an instance 
of source metamodel into an instance of target metamodel. These metamodels are 
specified by means of UML class diagrams (MOF compliant).  

More formally, the combined source and target metamodel is part of a 
transformation program in MOLA. To avoid any confusion, classes in this combined 
metamodel will be called metaclasses in the paper. But the main part of MOLA 
program is one or more MOLA diagrams (one of which is the main). A MOLA 
diagram is a sequence of graphical statements, linked by arrows. It starts with a UML 
start symbol and ends with an end symbol. 

The most used statement type is the loop statement – a bold-lined rectangle. Each 
loop statement has a loop head – a special statement (grey rounded rectangle) 
containing the loop variable and the pattern – a graphical condition defining which 
instances of the loop variable must be used for iterations. The pattern contains 
elements – rectangles containing instance_name:class_name – the traditional UML 
instance notation, where the class is a metaclass. The loop variable is also a special 
kind of element, it is distinguished by having a bold-lined rectangle. In addition, a 
pattern contains metamodel associations – a pattern actually corresponds to a 
metamodel fragment (but the same class may be referenced several times). Pattern 
elements may have attribute constraints – OCL expressions. Associations can have 
cardinality constraints (e.g., NOT). The semantics of this loop statement (called the 
FOREACH loop) is natural – the loop is executed once for each instance of the loop 
variable, where the condition is true – the pattern elements can be matched to existing 
instances and attribute constraints are true on these instances. The valid instance set 
for the loop variable may be replenished during the loop execution – these additional 
instances are also used for iterations, but certainly, each instance only once. There is 
also another kind of loop – WHILE loop, which is denoted by a 3-d frame and 
continues execution while a valid loop variable instance can be found (it may have 
also several loop heads). Loops may be nested to any depth. The loop variable (and 



other element instances) from an upper level loop can be referenced by means of  
reference symbol – the element with @ prefixed to its name. 

Another widely used statement in MOLA is rule (also a grey rounded rectangle) – 
a statement consisting of pattern and actions. These actions can be building actions – 
an element or association to be built (denoted by red dotted lines) and delete actions 
(denoted by dashed lines). In addition, an attribute value of an element (new or 
existing) can be set by means of attribute assignments. A rule is executed once – 
typically in a loop body (then once for each iteration). A rule may be combined with a 
loop head, in other words, actions may be added to a loop head, thus frequently the 
whole loop consists of one such combined statement. 

To call a subprogram, a call statement is used (possibly, with parameters - 
instances in the same reference notation). A subprogram, in turn, may have one or 
more input parameters. The same loop statement notation can be used to denote 
control branching – with a guard statement instead of loop head. 

3. Basic Principles of MOLA Implementation 
A detailed description of MOLA implementation is quite lengthy (the same way as 
implementation of any model transformation language) and is not the goal of this 
paper. Here we will provide only some elements of this implementation – those which 
are necessary to convince that an efficient implementation of MOLA is possible. As 
for any of the transformation languages, the most difficult part is the implementation 
of pattern matching. In turn, the most critical use of patterns in MOLA is within loop 
statements, therefore we will concentrate on the implementation of loop statements, 
mainly the FOREACH loop – the most used one. The implementation of all other 
MOLA statements is relatively straightforward, and no special efficiency gains can be 
obtained there, therefore we hope the reader will believe that complete MOLA can be 
implemented in the way sketched here.  

To implement a transformation language, some sort of model/metamodel 
repository is required. In this paper we assume that such a repository is available – it 
can be a properly defined SQL database or a special repository based on hash tables. 
All we will need from this repository here is that some natural queries (to be 
described later) can be executed in a "nearly-constant" time with respect to the size of 
the model data. Certainly, a proper design of such repository for MOLA is not trivial 
(compare, e.g., to [11]) and could be a topic of another paper. 

We assume that the same repository contains also the MOLA program to be 
executed. Again, the exact format for the program storage will not be provided, except 
for some sketch of the pattern storage – the most used part. Some queries for 
retrieving the program elements will also be described. In totality, all the queries 
mentioned here form a virtual machine for MOLA execution. Certainly, this virtual 
machine must contain more functionality (e.g., for creating or updating model 
elements), but we hope that the reader will believe that the sketch of the machine 
provided in the paper can be properly extended, while preserving the requirements for 
efficiency to be described later. The rest of the section will be devoted to the sketch of 
the MOLA virtual machine. 

We start with the pattern storage and queries for it. Since a MOLA pattern – a 
slightly modified fragment of a UML class diagram – actually is an undirected graph, 
it could be stored in a quite straightforward way. However, in order to simplify the 
description of pattern matching algorithm used for MOLA, we will use another 
representation, also based on graph theory. Thus, we assume that an “optimizing 
compiler” is available for MOLA, which builds this representation.    



Fig. 1 presents a typical MOLA pattern in a FOREACH loop (actually part of Fig. 7). 

srct: Table

as: Association

dst: Class dstk: Key

src: Class #classToTable
source

destination

#keyForClass
 

Fig. 1. Pattern example 

When viewed from the loop variable (the node as: Association), it can be treated 
as a directed rooted tree with two branches. We want to code this tree as an ordered 
list of edges/nodes, in a depth-first manner, starting with the root. The list for the 
example will contain 5 elements: 

- the root node as: Association 
- association source leading to src: Class 
- association #classToTable leading to srct: Table 
- association destination leading to dst: Class 
- association #keyForClass leading to dstk: Key 

The described order will be especially fit for matching the pattern to the instance set: 
we start with the root (an instance of the metaclass Association), then proceed via the 
link source to an instance of Class etc.  

When the pattern is not a tree (as in the schematic example in Fig. 2), the compiler 
selects a spanning tree from the root and codes it as already shown. The basic part of 
the pattern code from Fig.2 could be the following: A, (A,rb,B), (B,rc,C), (B,rd,D), 
(A,re,E). The edges not in the tree will be coded by a special sublist at relevant nodes, 
so that each such edge goes “backwards” in the main list. For example, the following 
sublist of edges is attached to the node E: (E,sc,C), (E,sd,D) in Fig. 2. The selected 
coding reduces the checking of the existence of relevant “crosslinks” to a simple 
additional constraint during the pattern matching. 

a: A

e: E

b: B

d: D

c: C

rb

re sd

rd

rc

sc

 
Fig. 2. Another pattern example 

To put it more formally, the pattern code is the list Pattern, where each element is 
a structure consisting of: 

assoc – the association 
sourceIndex – index of the source node in the list 
metaClass – the metaclass instance of which is sought 
constraint – the local OCL constraint on attributes of the metaclass 
crossList – the sublist of “crosslinks” 
instanceSet – a pointer to a “restriction set”, necessary at runtime for nested loops. 

The virtual machine must contain one main operation for patterns: 
getPatternElement(int i) . 



The root element (the loop variable) is coded as the 0-th element of list (with less 
fields filled), and is available via 

getPatternRoot( ) . 
Some more data are generated by the compiler for reference elements of the 

pattern, they will be explained in the next section. 
Now the operations of the virtual machine for querying “model elements” – 

instances of metaclasses and associations in the repository are described. As it was 
already mentioned, the repository contains the current model to be processed – 
instances of metaclasses and links – instances of associations. Thus the model actually 
is also a graph – a graph of instances and links. We assume that the repository also 
supports a “list-like” behavior – you can query specified kind of instances and get 
them one by one – an SQL cursor-like behavior. All operations are assumed to be 
“static” – they remember the previous calls. The simplest required virtual machine 
operation is 

getNext(metaClass mcl). 
This operation returns the next instance of metaclass mcl upon each call (it does 

not matter how many instances of this operation are used in the program for the 
virtual machine). The null constant is returned when there are no more instances.  

The operation most used for implementing pattern matching is 
getNextByLink(association assoc, instance sourceInst, metaclass mcl). 

This operation returns one by one the instances of metaclass mcl, which can be 
reached by links corresponding to assoc from the fixed instance sourceInst. Null is 
returned in case of absence. There is also an initialization for it, with similar 
parameters  

initializeGetNextByLink(association assoc, instance sourceInst, metaclass mcl) 
Two more auxiliary operations are: 

eval(instance inst, oclExpression expr) – evaluate a local constraint on attributes 
checkLink(instance sourceInst, instance targInst, association assoc) – check whether a 
link of required type is between these instances. 

These operations are sufficient for programming the pattern matching for top-level 
FOREACH loops. There is no doubt that at least for an SQL–based repository they 
are of "nearly-constant" complexity with respect to the repository size (i.e., growing 
much slower than the repository size). 

Two similar more special operations are required for nested loops (using 
references): 

getNextFromSet(metaClass mcl, set instSet) and 
getNextByLinkFromSet(association assoc, instance sourceInst, metaclass mcl, 

set instSet) . 
These operations actually provide relevant instances from the specified set. 

Corresponding initializations are also available.  
This completes the description of virtual machine, used for pattern matching. 

4. Pattern Matching in MOLA 
A Java-style pseudocode is provided for the main part of the implementation schema -
the pattern matching. Pattern matching is required for all kinds of MOLA statements, 
but here we consider only the most used and also the most sensitive from the 
performance point of view statement – the FOREACH loop. Besides some well-
known Java-like constructs, the pseudocode will contain only calls to MOLA virtual 
machine operations, defined above. The specific requirements for matching, outlined 
already in the introduction, are all taken into account in matching procedure design. 



The matching procedure uses a runtime list BoundInstances, with the same length 
as the Pattern, which contains metaclass instances matched to the corresponding 
pattern elements. The 0-th element of it contains the current instance of the loop 
variable (the root).  

We start with the simplest case – a top-level loop (having no parameters). Then all 
instances of the loop variable metaclass must be browsed and for each such instance 
the pattern must be matched. If a valid match (according to MOLA semantics, any of 
them, e.g., the first, if, in fact, there exists more than one) is found, the actions of the 
iteration are performed, using the matched instances. 

The main idea is quite simple. We try to advance along the Pattern list, by finding 
on each step an instance of the metaclass required by the current Pattern element. An 
appropriate instance is sought, using the already known source instance and browsing 
instances reachable from it via links of the specified type (Pattern[i].assoc). If an 
instance is found which satisfies constraints, it is stored in BoundInstances and we 
advance to the i+1st pattern element. If no valid instance is found this way, we 
backtrack to the previous pattern element in the list – select a new instance for it. It 
should be noted that the specified backtracking strategy is not optimal – it is chosen to 
simplify the pseudocode and its complexity evaluations for "good cases". For 
example, if a pattern element has no crosslinks, we could backtrack to the pattern 
element with index equal to the current sourceIndex. However, these optimizations 
are not essential for our performance evaluations, since actually only a trivial 
backtracking is typically used in MOLA. If backtracking reaches the loop variable 
(root), we start a new pattern matching for a new instance of it.  
 
lv = getPatternRoot( ); 
while ( lv_inst = getNext(lv.metaClass) ) // browse instances of the loop variable 
{ 
  if ( !eval(lv_inst, lv.constraint) )    // if the eval operation returns false (constraint fails)  
    continue;                                    // then start next iteration 
  BoundInstances[0] = lv_inst;       // store the current loop variable instance 
  failed = false;             //  failed is a boolean tag signaling match exhaustion  
  mustInitialize = true;  // getNextByLink must be initialized – a new context is started 
  i = 1;                          // start matching 
  while ( i < Pattern.Size ) 
  { 
      pattern_element = getPatternElement(i); 
      if ( mustInitialize )   // initialize local search if it is not backtracking 
            initializeGetNextByLink(pattern_element.assoc,  
                                    BoundInstances[pattern_element.sourceIndex], 
                                    pattern_element.metaClass); 
     curr_inst = null; 
     while ( curr_inst = getNextByLink(pattern_element.assoc,  
                               BoundInstances[pattern_element.sourceIndex], 
                               pattern_element.metaClass) )  // take current candidate instance 
    { 
       if ( validate(curr_inst, pattern_element) ) // validate is a subprocedure checking  
       break;                                    // the local constraint and existence of crosslinks 
    } 
    if ( !curr_inst ) // curr_inst not found, i.e., equal to null, local search is exhausted 
    { 
      if ( i = = 1 ) { failed = true; break; }  // no more backtracking possible, select  
                                                             // new root instance 
      else { i = i-1; mustInitialize = false; continue; } // backtracking must be  



                                                                               // performed! 
    } 

BoundInstances[i] = curr_inst;   // successful match step 
i = i+1;                                        // advance to the next step 
mustInitialize = true; 

  } 
  if ( !failed )   // match successful, BoundInstances contain the result 
    executeRule();    
} 

It is not difficult to ascertain that the described procedure indeed implements the 
matching algorithm outlined in the beginning. What refers to the subprocedure 
validate, it is easy to see that it can be implemented directly using eval and checkLink 
operations, the number of required steps depends only on the pattern element size. 

Nested loops typically contain references to elements in upper level loops. From 
the point of view of a nested loop, all references have fixed instances during the 
match, so we will call them fixed elements in this section. In principle the same 
matching procedure could be used for nested loops, with fixed elements playing the 
role of additional constraints. But this approach is too suboptimal, requiring excessive 
searches proportional to the model size. Therefore we propose a more optimal 
approach, where the search space is limited on the basis of fixed elements. For this 
purpose restriction paths, leading from fixed elements to the root in the pattern are 
also built by the compiler.  

Additional preparatory pass is added to the matching procedure. During this pass 
for each path the sets of feasible instances are built. For fixed elements themselves 
the set consists of just one instance, but for subsequent path nodes the set is 
determined by the pattern association (i.e., by links corresponding to this association). 
Finally, a set for root is also found. If two paths have a common node in the pattern, 
then set intersection is taken at this node. For example, the root is common to all 
paths, so at least there the intersection will be taken. To implement this principle, sets 
must be kept separate from paths, therefore the sets are attached to the corresponding 
elements of Pattern (via instanceSet). The described set building algorithm can be 
implemented easily, using the list of restriction paths. The same getNextByLink 
operation is used to retrieve instances to be placed in sets. Certainly, some obvious 
operations for adding an element to a set and building a set intersection are also 
necessary. Since the total size of the sets built in this process will be limited by a 
constant in our performance evaluations (see section 6), there is no need to elaborate 
more on this set building. 

Now a procedure very similar to the one described above can be used for pattern 
matching (and yield the required performance). The only difference is that 
getNextFromSet is used instead of getNext and getNextByLinkFromSet instead of 
getNextByLink (and the corresponding initialyzer is replaced too). These operations 
select instances only from their set argument. The sets for instance selection 
(including the root) are those found in the preparatory pass. If a pattern element has 
no instance set attached (it is not on a restriction path), getNextByLinkFromSet 
behaves the same way as its simple counterpart getNextByLink. Thus for those pattern 
elements, where fixed elements restrict the search space, the restricted search is used, 
while for others the full search is applied, as in the previous case. The analysis in the 
next section shows that the proposed principle for building restriction sets is indeed 
optimal – in some cases the exact required instance set is obtained. 



5. Example 
The same Class-to-Relational DB example from [8] is used to evaluate the 
performance of the proposed MOLA implementation. Here we repeat only a very 
short description of the transformation, a complete description is to be found in [8], 
the specification originally comes from [1]. 

Any persistent Class (with kind=“persistent”) must be transformed into a 
database Table. In addition, a (primary) key is built for this table. Attributes of the 
class, which have a primitive data type, must be transformed into columns of the 
corresponding table. Attributes whose type is a class, must be transitively “drilled-
down”: primitively-typed attributes of the new class are added as columns to the table 
for the original class. For primitive-typed “direct” attributes of a persistent class with 
kind=”primary”, the corresponding columns are included in the relevant (primary) 
key. An association (with multiplicities ignored, but direction taken into account) is 
transformed into a foreign key for the “source end” table. The same table is extended 
with columns corresponding to columns of the (primary) key at the target end.  
Fig. 3 presents the combined metamodel: the upper part is the source – a simplified 
UML class diagram metamodel, the lower part is the target – a simplified relational 
database metamodel. In-between are temporary elements. Fig. 4 to 8 present the 
transformation as MOLA programs, Fig.4 shows the main program, which invokes 
the subprograms. All programs actually are simple or nested FOREACH loops. The 
temporary metaclass AttrCopy is used to implement the transitive closure (Fig.5).    

Target Metamodel
(simplified SQL)

Source Metamodel
(simplified UML)

ClassPrimitiveDataType

Rel_ModelElement
name : String
kind : String

Table

AttrCopy
name : String

Column
type : String

ForeignKey

Key

Classif ier AssociationAttribute

ModelElement
name : String
kind : String

attrCopy

*

ow ner

1

orig

1

copy *

ow ner
1 foreignKey

*
ow ner
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*
column

* foreignKey

*
1#fcolForKcol

*

ow ner1
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0..1

referrredBy*

refersTo
1

type
1typed

*
1

#forkeyForAssoc 0..1

forw ard*

source 1

reverse*

destination 1
1

#attributeToColumn *

1

#classToTable 0..1

1

#keyForClass 0..1

ow ner1
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Fig. 3. Combined Metamodel 



AssociationsToForeignKeys()

c: Class
{kind="persistent"}

CreateAttributeCopies(@c:Class)

BuildTablesColumns(@c:Class)

DeleteCopies()

           

@c: Class

a: Attribute ac: AttrCopy
name:=a.name

@c:Class

atc: AttrCopy @c: Class

a1: Attribute

c2: Class

a2: Attribute

@atc: AttrCopy

atcn: AttrCopy
name:=@atc.name+"-"+a2.name

@c: Class

attrCopy
orig

copy

attrCopy

attribute

type

orig

attrCopy

attrCopy
orig

copy

attribute

 
Fig. 4. Main Program    Fig. 5. Subprogram CreateAttributeCopies 



@c:Class

@t: Table

@c: Class @k: Key

a: Attribute
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col: Column
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@t: Table
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dstk: Keydst: Clas s

srct: Tablesrc: Class

belongsTo
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#keyForClass

refersTo
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#forkeyForAssoc

foreignKey
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#classToTable

column
ow ner
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foreignKey
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Fig. 6. Subprogram BuildTablesColumns  Fig. 7. Subprogram AssociationsToForeignKeys 

ac: AttrCopy @ac: AttrCopy

 
Fig. 8. Subprogram DeleteCopies 

6. Performance evaluation for the example 
Aside from being a standard benchmark for MDA languages, the example is very 
appropriate for performance evaluation. For example, the procedure in Fig. 5 actually 
has the loop depth 3, which could lead to a bad performance. 

We start with one general observation on MOLA programs, which is true for the 
example and also for all MOLA programs built so far. A pattern in a correct MOLA 
program is typically built so that any nondeterministic choice is excluded during the 
pattern match. More precisely, each pattern element (except for the loop variable) can 



be matched to 0 or 1 instance (if 0, the pattern fails for the given instance of loop 
variable). This can be achieved by syntactic means, e.g., by selecting associations 
with multiplicity 1 in the appropriate direction. Or some semantic considerations 
specific to the example may be used. For nested loops such unambiguous matching 
typically is achieved by proper use of references to elements of upper level loops. 
During the analysis of the example the specific reason for each loop will be shown. 

The common principle, which will be applied to analysis of all loops, is that no 
proper backtracking occurs in the situation described above. Namely, either one 
instance can be matched to a pattern element or there is no instance at all and the 
pattern fails. The pattern matching procedure proposed in the previous section is 
specially built so that only a constant "overhead" can occur in this situation. More 
precisely, if a pattern element cannot be matched, the procedure has just to backtrack 
formally (without finding any new match) over all preceding elements in the pattern 
list. 

To start with performance evaluation for the example, some reasonable 
assumptions about the source models (class models built according to the metamodel 
in Fig.3) must be made. We assume that all instance level multiplicities (number of 
the specified links per instance) are bounded by some fixed constant, while the size 
of the source model (instance set) may grow unboundedly. For example, it means that 
if we have n classes (i.e., instances of the metaclass Class), then we can have at most 
c1*n instances of Attribute and c2*n instances of Association in the source model. In 
other words, the instance graph has bounded degrees for all types of edges. The 
described transformation includes a transitive closure, and even for the 
abovementioned assumptions the target model (or instance set) could have unlimited 
cardinalities. More precisely, there could be an unlimited number of Columns per 
Table. Since this is untypical in practice, we assume this number also bounded by a 
constant.    

The "units", in which the number of required steps for a MOLA procedure will be 
measured, are the calls to virtual machine operations (actually those dealing with 
instances, not MOLA code). 

The simplest case for performance evaluation is top-level FOREACH loops (not 
using any references). There are two such loops in the example – the main one in 
Fig.4 and the top loop over Associations in Fig.7.  The main loop over Class in Fig.4 
is obviously executed for each Class instance, i.e., n times, creating a proper iteration 
(subprogram invocation) for persistent instances – we assume that it is also O(n) 
times. Our performance measure – virtual machine calls is obviously the same since 
actually there is no pattern in this loop. 

The top loop in Fig.7 is more interesting since it has a pattern – reproduced also in 
Fig.1. If we had to evaluate the number of steps in matching this pattern without any 
special considerations, we would obtain O(n5) – there are five elements in the pattern 
all having corresponding instance sets of size O(n). Fortunately, the pattern is a very 
correct one for our evaluations – the no-backtracking principle applies in the simplest 
way, since all pattern associations have multiplicities 1 or 0..1 in the required 
direction (away from the root) in the metamodel (see Fig.3). Thus, an Association has 
exactly 1 source Class, a Class has 0 or 1 #classToTable link to Table etc. According 
to the constant overhead in matching procedure described above, this yields an 
estimate O(n) for pattern matching in this FOREACH loop. The real number of 
iterations (executions of the nested loop) can also be evaluated as O(n) according to 
our assumptions – since persistent Classes have Tables and Keys. 



Now some general comments on pattern matching evaluation for nested loops, 
containing references. Patterns in such loops contain elements of two kinds. Elements, 
which are on restriction paths (paths linking a reference to a loop variable, see section 
4), can be matched to instances from feasible instance sets, built according to the 
principles described in section 4. Since these sets are built, starting from one instance 
(the reference) and the size of the next set is limited by the number of specified links 
from instances of the previous set, the size of any instance set is also limited by a 
constant in our case. This implies that there is no need for precise evaluation for this 
kind of pattern elements, if we want to obtain just order-of-magnitude type results. By 
the way, this implies also that the given kind of loop is iterated no more than constant 
number of times on each invocation. Certainly, we have to check whether the loop 
variable is indeed reachable by a restriction path. Pattern elements not on restriction 
paths should be evaluated according to the same no-backtracking principle as above – 
the general matching procedure is used for them.  

We start with the evaluation for MOLA subprogram in Fig.5 – it has loop nesting 
depth 3 (it is invoked in the main loop). Fortunately, all pattern elements (including 
loop variables) in all FOREACH loops in this procedure are on restriction paths. For 
example, in the first loop only Attributes of the given Class may be iterated. Similar 
situation is for the next loop, both at upper level and the nested loop (there the 
restriction path is longer, but actually the number of Attribute instances per loop 
invocation is limited by the original constant c1, the other sets have size 1). According 
to the general evaluation principles for nested loops described above, we can conclude 
that the total complexity evaluation for this subprogram is just a constant (for one 
invocation). However, we must be careful in one respect. The second loop (upper 
level) is a self-replenishing one, the instances of AttrCopy are generated within the 
nested loop (a typical situation for transitive closure). Therefore we must be sure that 
the total number of AttrCopy instances per Class is also limited by a constant (only in 
this case our general principles are applicable). This is not a MOLA evaluation 
problem, it is more the domain problem. Since any primitive-typed AttrCopy 
generates a Column (see Fig.6) and we have assumed a constant limit for Columns per 
Table, it is natural to assume also a similar limit for AttrCopy (which makes our 
conclusions completely valid). 

A more interesting situation is for BuildTablesColumns subprogram in Fig.6, 
where patterns contain both kinds of elements. The first statement of this subprogram 
is a simple rule (executed once), the only fact to be noticed is that elements of a rule 
(Table and Key) may be used as references in subsequent statements. The second 
statement is a loop, where the loop variable (AttrCopy) is on a restriction path, but 
two other elements are restricted by metamodel multiplicities. This in totality again 
yields a constant evaluation. The third statement is a loop, where the loop variable 
(Attribute) is on two restriction paths – from Class and Table. The general evaluation 
principle applies in a standard way, but it is interesting to note that the set intersection 
from two paths supply the exactly desired instance set for Attribute, which in turn 
ensures matching uniqueness for Column (by semantic considerations, not by 
multiplicities). The program would be incorrect if the uniqueness were not achieved.  

The remaining loops (the nested one in Fig.7 and the one in Fig.8) obviously 
satisfy the general evaluation principle and have a constant evaluation. Thus all nested 
loops in the program do have a constant evaluation for pattern matching, and the total 
estimate for the whole program evidently is O(n) – both for pattern matching and 
any other kind of operations. In other words, the implementation is optimal for the 
example (with respect to the measures used). 



7. Conclusions 
We have demonstrated on one example, how reasonable programming style and 
appropriate implementation of pattern matching together yield a very efficient 
performance. Any of pitfalls of pattern matching, typical to graph rewriting languages 
[10], are automatically avoided in MOLA for this example.  

In the conclusion we want to generalize and comment this situation more broadly. 
Firstly, it is the completely deterministic control structure of MOLA – sequence, the 
two types of loops and branching, which forces us to use a "deterministic" approach 
to programming in MOLA. The only non-determinism is that no one is interested in 
the order, in which valid instances of a loop variable are processed (even concurrent 
processing could be used). 

Consequently, in a typical MOLA program, where patterns have no redundant 
elements, we expect a deterministic match for pattern elements. To achieve this, good 
programming style for MOLA patterns should be used. The elements of this style 
are: use metamodel associations with multiplicity 1 in the appropriate direction (away 
from loop variable), appropriate semantic considerations (the nested loop in Fig.6, 
statechart flattening example – Fig.13 in [6]) or sufficient references in nested loops 
(Fig.5,6,7). The matching determinism is especially important if we have some 
additional use of the pattern element (and typically it is so) – we reference it in a 
nested loop, use its attributes, use it as a base for instance creation etc. If several 
"useful" instances of a metaclass correspond to a pattern element, then most probably 
actually all of them must be processed in the same way. In MOLA this should be 
implemented by one more nested loop using the metaclass as the loop variable and 
references to elements in the previous loop for specifying the context. 

If the described means ensuring deterministic match are used in a MOLA 
transformation program, then its performance can be evaluated in a way similar to the 
example in section 6. Such an analysis has been performed for all MOLA examples 
built so far, and in all cases the evaluation showed results similar to that in the paper – 
there was no loss with respect to the natural complexity of the implemented 
transformation algorithm. For many MDA-related transformations the estimate O(n) 
with respect to data size is typical, but there are also more complicated ones.    

Thus a correct transformation program in MOLA becomes efficient at the same 
time. There is no special need to bother on program efficiency – just concentrate on 
correctness and natural use of MOLA constructs. Certainly, an appropriate 
implementation of MOLA must be used – the one that takes the described above 
feature into account. A possible implementation of pattern matching has been 
sketched in section 4. The matching procedure may have more optimizations – the 
one described here is sufficiently "rough", but it would have no great effect in typical 
case, when no proper backtracking occurs. Some heuristics specially oriented towards 
"typical trivial backtracking" could also be added. For example, if an instance is 
found by getNextByLink, the association multiplicity is 1 (this fact can be marked by 
the compiler) and another instance is required, immediate backtracking (to the deepest 
feasible level) could be done. However, only constant improvements can be achieved 
this way. 

All the abovementioned suggests that an efficient and at the same time relatively 
simple implementation of MOLA is possible. The implementation schema for pattern 
matching sketched in this paper can be used as the basis for such implementation. By 
the way, this suggests that an implementation based on an interpreter for MOLA 
virtual machine is quite feasible from the performance point of view. 
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