Bringing Domain Knowledge to Pattern Matching

Agris SOSTAKS
IMCS University of Latvia, Latvia, e-mail: agris.sostaks@lumii.lv

Abstract. This paper addresses the pattern matching problem for model transformation languages. Despite being an NP-complete problem, the pattern matching can be solved efficiently in typical areas of application. Prediction of actual cardinalities of model elements is the key to sufficient efficiency. The existing approaches acquire the actual cardinalities using complex run-time model analysis or using analysis of metamodel where the required information is poorly supplied. In the paper we show how the deeper understanding of domain which is targeted by model transformation language can dramatically reduce the complexity of pattern matching implementation. We propose a simple pattern matching algorithm for model transformation MOLA which is efficient for tasks related to the model driven software development. Additionally a metamodel annotation mechanism is proposed. It refines the existing means of metamodeling by adding new classes of cardinalities. They make more efficient the pattern matching algorithms which do not use the complex run-time analysis.

Keywords. model transformation, MOLA, domain-specific, pattern matching, annotations

Introduction

Model transformation languages are becoming increasingly mature in recent years and range of the areas where transformation languages are being used is widening. The growing popularity of transformation languages puts stricter requirements on their efficiency. Most of the popular transformation languages are using declarative pattern definition constructs. The main implementation problem of such languages is the pattern matching. This problem, in fact, is the subgraph isomorphism problem which is known to be NP-complete. However, in practice typical patterns can be matched efficiently using relatively simple methods. The use of different means of pattern definition results into different implementations of pattern matching for every language. The more sophisticated constructs a language uses, the more complicated becomes the implementation of the pattern matching. The pattern matching implementation for the graphical model transformation language MOLA [1] is addressed by this paper.

One of the most popular application domains for model transformations is Model Driven Software Development (MDSD) related tasks. These tasks have been tried to be solved in almost every model transformation language, also in MOLA. In fact, MOLA is designed as a simple and easy readable (therefore graphic!) model transformation language, which would cover typical transformation applications in MDSD. We refer to
transformations used in the European IST 6th framework project ReDSeeDS\(^1\) to illustrate the typical MDSD use cases of MOLA. We present a brief overview of MOLA in Section 1.

Section 2 gives a survey of pattern matching strategies used in implementations of model transformation languages. One of the most popular and also the most efficient method to solve the pattern matching problem is the local search plan generation. This method is used by several implementations of transformation languages, e.g. PROGRES \(^2\), VIATRA \(^3\), GrGen \(^4\) and Fujaba \(^5\). However, each implementation varies in details depending on pattern definition constructs used in the language. Most sophisticated strategies even use statistical analysis of model in runtime.

The implementation of pattern matching in MOLA is discussed in Section 3. MOLA also uses the local search plan generation strategies for pattern matching. We analyse the main properties of tasks related to MDSD. The typical patterns appearing in ReDSeeDS project have been discovered. The research is a base for a simple heuristic algorithm that is efficient for most patterns typically used in MDSD-related transformations. This algorithm can be used in fast implementations of pattern matching for transformation languages which use similar constructs to MOLA. The key aspect to success of the simple algorithm is finding out the actual cardinalities which are specific to the MDSD domain. The development of the simple pattern matching algorithm has revealed that metamodelling languages do not offer sufficient means to denote the actual cardinalities. Therefore we introduce two new classes of cardinalities and a metamodel annotation mechanism which allows specifying the refined cardinalities in metamodel. In Section 3 we also show how the new annotation mechanism can be used to improve the efficiency of pattern matching algorithm.

1. MOLA

MOLA is a graphical transformation language developed at University of Latvia, Institute of Computer Science and Mathematics. It is based on a traditional concept among transformation languages: the pattern matching. The main distinguishing feature is the use of simple procedural control structures governing the order in which pattern matching rules are applied to the model. The formal description of MOLA and also MOLA tool can be found in MOLA web site\(^2\).

One of the biggest use cases of MOLA is in the European IST 6th framework project ReDSeeDS. One of the goals in ReDSeeDS is providing a tool support for MDSD. The Software Case Language (SCL) is used to model the system. The main parts of SCL are Requirements Specification Language (RSL)\(^6\) and a subset of Unified Modelling Language (UML). Requirements in RSL are scenarios in a controlled natural language. MOLA is used to specify a transformation from requirements to architecture and further to detailed design models. Transformations are divided into several steps generating a chain of models. We have gained a great experience during this project in writing typical MDSD transformations. Short excerpts from these transformations are used in this paper.

A MOLA program transforms an instance of a source metamodel (the source model) into an instance of a target metamodel (the target model). Source and target metamodels

\(^1\)http://www.redseeds.eu
\(^2\)http://mola.mii.lu.lv
are jointly defined in the MOLA metamodelling language, which is quite close to the OMG EMOF specification. Actually, the division into the source and target parts of the metamodel is quite semantic, they are not separated syntactically (the complete metamodel may be used in transformation procedures in a uniform way). Typically, additional traceability associations or classes link the corresponding classes from source and target metamodels; they facilitate the building of natural transformation procedures and document the performed transformations.

Figure 1 demonstrates part of the SCL metamodel used in this section as a transformation example. It is a simplified version of the full SCL metamodel. As we can see the source and target metamodels are given in the same class diagram and the separation into source (RSL) and target (UML) metamodels is quite semantic. The requirements specification (requirement model) consists of requirements packages which are used to group the requirements in RSL. One of the requirement representation forms is the constrained language scenario. Thus a requirement may consist of several scenarios written in the constrained language. The traceability elements also play a significant role in MOLA transformations. The sclkernel::TraceabilityLink class (particularly, the IsAllocatedTo for mapping from requirements to architecture) is used for this purpose.

MOLA procedures form the executable part of a MOLA transformation. One of these procedures is the main one, which starts the transformation. MOLA procedure is built as a traditional structured program, but in a graphical form. Similarly to UML activity diagrams, control flows determine the order of execution. Call statements are used to invoke sub-procedures. However, the basic language elements of MOLA procedures are specific to the model transformation domain - they are rules and loops based on rules. Rules embody the declarative pattern match paradigm, which is typical to model transformation languages.

Each rule in MOLA has the pattern and action part. Both are defined by means of class elements and links. A class element is a metamodel class, prefixed by the element ("role") name (graphically shown in a way similar to UML instance). An association link connecting two class elements corresponds to an association linking the respective classes in the metamodel. A pattern is a set of class elements and links, which are compatible to the metamodel for this transformation. A pattern may simply be a metamodel fragment, but a more complicated situation is also possible - several class elements may reference the same metamodel class. A class element may be a reference to previously matched instance. This reuse mechanism plays a crucial role in the implementation of
pattern matching. In addition, a class element may contain also a constraint - a simple Boolean expression. The main semantics of a rule is in its pattern match - an instance set in the model must be found, where an instance of the appropriate class is allocated to each pattern element so that all required links are present in this set and all constraints evaluate to true. If such a match is found, the action part of the rule is executed. The action part also consists of class elements and links, but typically these are creation actions. Instances may also be deleted and modified in the action part. If several instance sets in the model satisfy the rule pattern, the rule is executed only once on an arbitrarily chosen match. Thus, a rule in MOLA typically is used to locate some fragment in the source model and build a required equivalent construct in the target model.

Another essential construct in MOLA is the foreach loop. The foreach loop is a rectangular frame, which contains one special rule - the loophead. The loophead is a rule, which contains one marked (by a bold border) class element - the loop variable. A foreach loop is an iterator, which iterates through all instances of the loop variable class, which satisfy the constraint imposed by the pattern in the loophead. With respect to other elements of the pattern in the loop head, the "existential semantics" is in use - there must be a match for these elements, but it does not matter, whether there is one or several such matches. A loop typically contains the loop body - other rules and nested loops, whose
execution order is organised by control flows. The loop body is executed for each loop iteration.

Figure 2 shows a typical MOLA procedure written for RedSeeDS project. This procedure is a part of the transformation which builds sequence diagrams from requirements written using constrained language scenarios. The task for this procedure is to build a UML package and traceability link for each requirements package which contains appropriate requirements. Next, every requirement in these packages should be processed. Note the similarity of bolded linguistic constructs used in the description and MOLA constructs - the foreach loop and reference. This allows describing such algorithms very straightforwardly and easily in MOLA. The outer foreach loop (the bigger black frame) iterates through every requirement package, which has at least one requirement with a scenario. The loop variable (pack: RequirementsPackage) is used to explicitly denote the class to iterate through. A constraint which filters matched instances is given using the additional class elements (existsUC and cls). It restricts the iteration to requirement packages which contain a requirement represented by a constrained language scenario. This foreach loop contains also a loop body which consists of a rule and another foreach loop. They are executed in every iteration of the loop. The rule, which creates a UML package (sPack class element), places this package into the appropriate top-level package (owningPackage association link to @p), sets the name of the package and finally creates the traceability element (ia class element and allocationSource and allocationTarget association links). The nested loop is a typical approach in MOLA to iterate through contained elements. The inner loop iterates through all requirements (loop variable uc) which are in the matched requirements package (the reference @pack) and which contain a scenario (the class element cls).

2. Related Approaches of Pattern Matching

The closest “relative” to MOLA in the world of model transformation languages is Fujaba Story Diagrams from Fujaba Tool Suite [5,7]. Fujaba is a graphical model transformation language which uses imperative control structures and declarative patterns. The specification of patterns in Fujaba is almost identical to MOLA. There is a restriction on patterns in Fujaba - the pattern must contain at least one bound (previously matched) element. The graphical syntax, of course, differs for both languages, but that is obvious for independently developed languages. The most significant difference between the two is the foreach loop. Fujaba does not specify the loop variable and a loop is executed through all of the possible matches of the pattern. In MOLA only the distinct instances that correspond to the loop variable are iterated over. MOLA foreach loop is more readable and easier to use, because of the loop variable.

A different programming paradigm is used in the graph transformation language AGG [8], which is a typical example of a declarative transformation language. AGG does not have any imperative control structures, and rules that describe patterns are being executed independently. The only way to affect the execution order is to use layering. Each rule in AGG includes a pattern which is specified by LHS graph and NACs. NACs are used by declarative transformation languages mainly to distinguish already processed model elements. Negative patterns are used differently in MOLA because of the specific
loop construct. MOLA also has negative pattern elements, but they are used to express a "logical" negative condition. The graph transformation language PROGRES [2] is a textual graph transformation language where patterns (graph queries) are specified graphically. Patterns allow using similar and even richer options than previously noted transformation languages. The ordering of statements is managed by algebraic structures and PROGRES follows declarative PROLOG-like execution semantics. Graph transformation language VTCL (Viatra Textual Command Language), which is part of the VIATRA 2 framework [3], defines patterns using textual syntax. VIATRA offers broad possibilities for the pattern definition: negative patterns may be at arbitrary deep level; the call of a pattern from another pattern, and even recursive patterns are allowed; the language may work both with model and metamodel. The execution order of rules is managed by ASM (Abstract State Machine) language constructs which are purely imperative. VIATRA has a rudimentary graphical syntax of patterns, however it seems that whole expressiveness of the language may not be available there. Another textual graph transformation language, which has appeared in recent years, is GrGen [4]. The expressiveness of patterns in this transformation language is close to VIATRA. Transformation rules are combined using similar algebraic constructs to PROGRES (except the PROLOG-like execution semantics).

Almost all model and graph transformation languages that use similar pattern concepts as MOLA are forced to deal with pattern matching task. There are four most popular algorithms that are used by transformation language implementations to solve the pattern matching problem:

1. Local search plan generation. The search of the instances corresponding to pattern is started from a single instance, which is a potential match - it corresponds to some pattern element. We may say that the pattern matching has been started from the corresponding pattern element. Next, the adjacent instances are examined according to the given pattern. If the examined instances do not match or another valid match is needed, backtracking is required. A search plan is the order in which the potential matches are examined. In fact, a search plan is the sequence in which pattern elements are traversed in order to find a valid match. The search plan generation algorithm must examine various search plans and evaluate them in order to choose one that is least expensive. The algorithm uses a cost model of basic search operations. Then the search graph based on the pattern is built and weights are attached according to the cost model. At last, the appropriate ordering is determined from the graph.

2. Reducing to CSP (Constraint Satisfaction Problem[9]). The pattern matching problem is reduced to an equivalent CSP. Pattern elements are mapped to the variables and constraints. This enables to use all the techniques known in the area of CSP. The main techniques are related to the appropriate ordering of variables and efficient use of backtracking. Thus, in general both methods, local search plan generation and CSP, are quite similar, but CSP puts more emphasis on intelligent backtracking.

3. Using relational database. Using relational database reduces the pattern matching problem to taking advantage of the power of query optimization in relational databases management systems. The task is to choose an appropriate database schema to store the model and to generate the SQL query which returns the valid matches.

4. Incremental pattern matching. The core idea of incremental pattern matching is to make the occurrences of a pattern available at any time. It requires caching all occurrences of a pattern and incremental updating whenever changes are made. If this
requirement is met then the pattern matching is made in almost constant time (linear to the size of result set itself). However, the drawbacks are memory consumption and overhead on update operations.

PROGRES was the first transformation language addressing the pattern matching problem[10]. It uses the local search plan generation. PROGRES builds a pattern graph, where a node is built for each pattern element. Next, the operation graph is built, adding information about all operations that may be used by pattern matching. The cost of each search operation is derived from heuristic assumptions and knowledge on multiplicities of pattern elements. The best-first method is used to determine the search plan from the operation graph.

VIATRA has been implementing most of pattern matching algorithms. The relational database algorithm for VIATRA uses a separate table for each class [11]. An appropriate SQL query is used for finding the pattern matches.

The generation of local search plans also has been used by VIATRA[12]. The search graph is built for a pattern. An additional starting node is added to the graph. Directed edges connect the starting node to every other search graph node. Each edge of the pattern is mapped to a pair of edges in the search graph, expressing the bidirectional navigability. The cost model is obtained by analyzing the existing models of the domain, e.g. typical UML class diagram, if the UML class diagram is being transformed. The collected statistics illustrate an average branching factor of a possible search space tree, built when pattern matching engine selects the given pattern edge for navigation. Costs are added to the search graph and the minimum spanning tree (MST) is found with the starting node taken as the root node. The search plan is determined from MST.

An incremental pattern matcher[13] (RETE network) is constructed based on the pattern definitions. Before transformation the underlying model is loaded into incremental pattern matcher as the initial set of matches. The pattern matching is performed efficiently; however the changes should be propagated within the RETE network to refresh the set of matches.

The authors of VIATRA have introduced a hybrid pattern matching approach[14], which is able to combine local search and incremental techniques on a per-pattern basis. Two scenarios are proposed: design-time selection of the strategy by developer and runtime optimization based on monitoring of statistics (available memory or model space statistics).

GrGen uses a very similar local search plan generation method[15] to VIATRA. The plan graph (search graph by VIATRA) is built in a similar way, but the lookup operation for pattern edges is added. The cost model is built based on statistics collected from the host graph (model) just before the execution of the transformation. The costs are added, the MST calculated, and a search plan is determined in a way similar to VIATRA.

Fujaba uses a less advanced local search plan strategy[16]. The pattern matching in Fujaba is started from the bounded element (the requirement in Fujaba is to have at least one per pattern). If there is more than one bounded element, one is chosen arbitrary. Links to follow are chosen by priorities using the first-fail principle. Regardless of simplicity of this algorithm, the benchmark tests[17] show that this strategy works almost as good as more advanced algorithms.

AGG uses an algorithm, equivalent to the current pattern CSP[18]. This approach introduces variables for each pattern node and queries for each pattern edge forming the constraint graph. This graph is quite similar to the search graph in local search graph
generation technique. Variable ordering used in the area of CSP is essentially the same as the concept of the search planning.

The previous version of MOLA Tool was based on a fixed relational database schema as a model repository. A single SQL-query was built and executed for every pattern by MOLA interpreter [19]. However, the performance of a query optimization was not sufficient for large queries generated by the interpreter.

The latest implementation of MOLA uses a lower level model transformation language L3 [20] as the target language for local search plan generation. L3 provides the basic operations on models and its implementation is oriented to the maximum execution efficiency and performance. It is a purely imperative language where patterns are also expressed in an imperative way. At the same time it is powerful enough to serve as a target language for MOLA compiler. The details of pattern matching implementation of MOLA compiler is discussed in Section 3.

3. Domain-Specific Pattern Matching

Although pattern matching strategies described in the previous section are rather different, they all are based on the same principle - decreasing the number of instances needed to be checked. This principle is behind the optimization of SQL queries, the CSP variable ordering and, of course, behind the most popular pattern matching strategy - the local search plan generation. Using these methods the efficiency of pattern matching is dependent in a great degree on knowledge of actual number of instances in a model being transformed. Precise number of instances in a model or let’s say actual cardinalities can be obtained by analysis of run-time models. It can be done just before the pattern matching like it is done in the case of GrGen [15]. However, this causes additional complexity for implementation and requires an interpreter-based solution for pattern matching implementation. Whole analysis and optimization should be done in runtime. An appropriate support of repository is needed too. Another way to get the actual cardinalities is the design-time analysis of typical run-time models. This method is described in [12]. The design-time analysis requires a lot of models to be processed in order to obtain a useful results. However, the availability of appropriate models is under question in a typical case.

Metamodel and pattern definition are also sources of information about the number of instances in models to be transformed. Of course, they do not show (and cannot show) the actual cardinalities. EMOF-like metamodelling languages allow specifying cardinalities for association ends. Usually one can specify that the navigation result may contain at most one instance (cardinalities 0..1 and 1) or many (cardinalities * and 1..*) instances. However, the possible number of instances of classes or more precise number of instances reachable from instance of given class by the specific association are missing in metamodels. Nevertheless, sufficiently efficient solutions which use just information from metamodels and different heuristics have been built, for example, the PROGRES solution [10]. The existing pattern matching implementations use just a general assumptions about metamodels and models being transformed. The complexity of pattern matching implementation would be much lower if the domain-specific information could be taken into account.
3.1. MOLA Language Design Patterns for MDSD

As it has been mentioned in the previous chapters MOLA language has been designed to solve tasks specific to model-driven software development. How can this knowledge help to do an efficient pattern matching? What does it actually mean - a task specific to MDSD?

In MDSD models describe various aspects of a system under development. These models are well structured. Model elements form a tree structure according to the composition hierarchy defined by the metamodel. Typically all model elements are parts of the composition tree and can be reached by traversing it. For example, both languages (RSL and UML) used in the ReDSeeDS project describe typical MDSD models. In RSL constrained language scenarios are parts of requirements which in turn are parts of requirement packages. Similarly UML elements always are parts of some container element - attributes are parts of classes, classes are contained in packages, and so on.

MDSD tasks can be described as compilation tasks. Every (or almost every) element of the source model is traversed and an appropriate target element is created. Since the goal of MDSD process is to obtain a working system (it’s a goal of every software development process) then this analogy is even more obvious. In fact, a requirement model is compiled to architecture and further to detailed design models in ReDSeeDS.

Another important property of MDSD tasks is a locality of transformations and conditions. It means that typically connected elements in a source model are transformed to connected elements in the target model. Therefore, even if models are described by hundreds of classes, a transformation of a single model element requires just the local neighbourhood of the element to be seen.

Keeping in mind the just described MDSD properties (tree-like models, compilation-like tasks, local transformations) we will study the typical MOLA patterns used in the ReDSeeDS project. To approximately estimate the volume of transformations written during the ReDSeeDS project we are giving some statistics. The model-based methodologies used in the project cover quite a large subset of UML being generated - UML class, activity, component and sequence diagrams. Both methodologies include several transformation steps. The first step for both methodologies is the transformation of requirements. The next steps are generation new UML models adding more specific details. There are ~350 MOLA procedures developed during the ReDSeeDS project. They include ~200 loops and ~800 rules that gives ~1000 pattern specifications.

A typical pattern used in the ReDSeeDS project is depicted in Figure 3. This pattern finds the name of an actor (names are coded as noun phrases in RSL). The example illustrates the locality of a transformation. The information needed for transformation (actor’s name) can be reached by association links in a close distance. Note, that all associations leading from the Actor class to the Noun have cardinality "1" or "0..1" - each actor has exactly one name (represented by noun phrase), there is only one noun
Variation of the previous pattern is shown in Figure 4. This pattern describes the collecting of nearby elements of a UML interaction. The owning classifier and the component corresponding to the lifeline named "UIComponent" should be matched. Unlike in the previous example there is an association with cardinality "*" leading from the referenced element (to Lifeline). However, as we see in practice, typically there is only one model element in the model satisfying the given constraint and the "suspicious" association has a low cardinality in practice. In this case there are no more than 5-10 lifelines per interaction.

Figure 2 refers to the typical usage of loops in the ReDSeeDS project. Since RSL and UML model elements form a tree-based hierarchy, the transformation algorithms traverse model elements in the top-down style starting from the top elements of the hierarchy. The most natural way to describe such traversing is by using nested foreach loops referencing the previous loop variables. The pattern may contain additional class elements for collection of all necessary neighbourhood instances or specifying additional constraints on the existence of appropriate nearby instances. There are additional constraints in our example.

3.2. The Simple Pattern Matching Algorithm for MOLA

As we have got an insight what are the typical MOLA patterns for MDSD tasks, we can propose a simple (in the sense how complex is the implementation) algorithm, which is efficient for the patterns described above. The simple algorithm uses the following principles:

- if the pattern contains a reference class element, then the pattern matching starts from the reference (if there are more than one, then an arbitrary is chosen).
- otherwise the pattern matching starts from the loop variable in a loophead or from arbitrary chosen element in a normal rule.
- the pattern matching is continued with class elements accessible from already traversed class elements by association links.

Pattern matching in a regular rule is started from the reference class element, if such class element exists in the pattern. Though MOLA does not require the presence of a reference class element in the pattern, the practical usage of MOLA has shown that most of the regular rules contain it (see Figures 2, 3 and 4). Usage of imperative control structures causes the reuse of the previously matched instances, which are represented by the reference class elements in MOLA. This is one of the main reasons why such
simple optimization technique works almost as well as more sophisticated approaches. For example, the pattern depicted in Figure 3 is matched in constant time when the simple pattern matching strategy is applied. Another example was depicted in Figure 4. This pattern matches in linear time with regard to the number of lifelines in the given interaction, which is relatively low.

Use of reference class elements is natural also in loopheads. It is common to have a loop over, for example, all properties of a given class. This task can be easily described, using a single MOLA loop, where the pattern in the loophead is given using the reference class element and the loop variable. See the loophead of the inner loop in Figure 2 as a typical case. In this case the pattern matching is started from the reference element (@pack) reducing the search space dramatically. Of course, the path from the reference class element to the loop variable may be longer. The only restriction is that cardinalities of associations along the path (except one directly before the loop variable) should be "1" or "0..1". In a foreach loop without a reference in the loophead, the pattern matching is started from the loop variable in the loophead. The practical usage of MOLA has shown that typical tasks are naturally programmed using patterns, where actual cardinalities of association links leading from the loop variable are low. This causes the execution of the loop to work in almost linear time depending on the number of the instances corresponding to the loop variable.

Note the loophead of the outer loop in Figure 2. Though cardinalities of association links leading from the loop variable are "0..*", the pattern matching started from the loop variable is still efficient. Since class elements other than the loop variable provide the "existence semantics" (find first valid match), in practice this loop works also in linear time because almost all requirements are described using scenarios. In fact, this additional constraint is used to filter out those few cases where requirements are described using different means.

Note that this strategy does not even require the analysis of the cardinalities of metamodel elements at the same time remaining efficient in the practical usage. A similar pattern matching strategy is used also by Fujaba. The bound variable (reference class element in terms of MOLA), is even required by the pattern in Fujaba. However, the benchmark tests [17] have shown that this strategy performs as well as more sophisticated strategies. The same tests also have shown that an appropriate usage of the language constructs (transformation design-patterns used to improve Fujaba transformation) causes a significant positive impact on the performance.

We have tested the transformations on several sufficiently large software cases developed within the ReDSeeDS project. The total time of execution turns out to be almost linear with regard to the total number of constrained language sentences in the requirement scenarios specified in the RSL for the case. The patterns described above are the most typical patterns used in MOLA transformations for the ReDSeeDS project. The total amount of such patterns is about 95% of all patterns. Some specific sub-tasks require non-typical patterns which may cause insufficient pattern matching performance, however in practice they are performed on elements which are relatively low in number compared to the number of constrained language sentences. Thus, they do not affect the overall performance of pattern matching.

Domain-specific knowledge helped us a lot to reduce the complexity of pattern matching algorithm implementation. In fact, the algorithm has just three simple rules.
The key aspect that allows such simple algorithm is the identification of typical patterns used in MDSD-related tasks.

3.3. Refinement of Cardinalities

As we have seen the major role in the implementation of pattern matching is played by the actual cardinalities of model elements. Efficient pattern matching using the simple algorithm is possible mainly because the cardinalities are low for the key associations. However existing metamodelling languages cannot distinguish between low and high cardinalities. One reason is a lack of appropriate means in languages. Another reason is that there are no precise definitions of what low and what high cardinality is. In this section two main cardinality classes are introduced.

A metamodel element (class or association end) has a low cardinality if the number of corresponding instances is not dependent of total number of instances in the model. We may say that such cardinality is constant against the total number of instances in the model. For example, we can expect that in a UML class diagram a typical class will have about 5-10 properties, and this number is independent of the model size.

A metamodel element (class or association end) has a high cardinality if the number of corresponding instances is dependent of total number of instances in a model. For example, in a UML class diagram the number of typed elements for every type grows as the size of the class diagram increases.

Now taking into account the defined cardinality classes we can introduce a new means to MOLA metamodelling language and MOLA itself which allow to define cardinalities more precisely. We allow annotating classes and association ends in the metamodel and class elements and association link ends in patterns. The following annotations can be used:

- **SINGLE** - denotes that the class (or navigation result) has at most one instance. In fact, this annotation is used for classes, because cardinality "1" or "0..1" can be already specified for an association end.
- **FEW** - denotes that the class (or navigation result) has low cardinality.
- **MANY** - denotes that the class (or navigation result) has high cardinality.

Annotations made in the metamodel affect the pattern matching algorithm in every rule where pattern elements of the corresponding type are used. Annotations made in the pattern affect the pattern matching algorithm only in the scope of the corresponding rule.

What effect annotations do on pattern matching? The "SINGLE" annotated elements and links as well as references are preferred for the pattern matching. The "FEW" annotated elements and links are preferred over links that are not annotated. Links and elements that are not annotated will be preferred over links and elements with the "MANY" annotation. In fact, an annotation sets the priority on the pattern element. The lower the predicted number of instances is for the pattern element, the higher priority it gets for the pattern matching. The developer annotates metamodel elements during the development process of the metamodel. Since metamodelling requires the knowledge of the modelled domain, typically there are no problems to resolve actual cardinalities. It should be noted that annotations are optional - they are additional means to improve the efficiency of transformations.

Let us illustrate the usage of annotations. Figure 5 shows a pattern in a loophead where annotations help to find the best search plan. This loop iterates trough every prop-
property \((p)\) of the given class \((@c)\) having the given type \((@t)\). The problem is that associations \textit{ownedAttribute} and \textit{typed} both have cardinality \("*"\) and without additional information both are treated equally (un)efficient for pattern matching. However, in practice the average number of owned attributes for a class is by magnitude less than typed properties for a type. In fact, cardinality of attributes for a class is \textit{low}, but cardinality of typed elements for a class is \textit{high}. Therefore, adding annotations "FEW" and "MANY" to \textit{ownedAttribute} and \textit{typed} association ends accordingly solves the problem - navigation using the \textit{ownedAttribute} association end is preferred over navigation using the \textit{typed} association end. The annotation mechanism allows refining the existing means for describing cardinalities. It brings the domain-specific knowledge which is crucial for pattern matching implementation into metamodelling and model transformation languages.

4. Conclusions

We have made a review of pattern matching mechanisms for the most popular model transformation languages in this paper. There are several pattern matching approaches, but the most popular is the local search planning. In fact, it is the most universal strategy - it gives efficient results for different types of patterns. However, implementations of more advanced approaches are rather complex, although simpler strategies (like in case of Fujaba) frequently give similar results. Of course, that holds not for every use case, but mostly for the \textit{domain} the transformation language is designed for. For example, MOLA is efficient for MDSD-related tasks, as the analysis of typical MOLA patterns in the RedSeeDS project has shown.

A great role for efficient pattern matching is played also by the constructs of the pattern used in the language. MOLA offers very natural means for describing MDSD-related tasks, the foreach loops combined with explicit reference mechanism. At the same time even the simple pattern matching algorithm which has been implemented for MOLA works efficiently in these cases. Thus, for the \textit{compiler}-like tasks, where every element of a structured model (like UML) should be processed, MOLA can be used in a natural way with a high efficiency with very simple implementation of pattern matching.

The key aspect to success of the simple algorithm is finding out the actual cardinalities which are specific to the MDSD domain. The development of the simple pattern matching algorithm has revealed that metamodelling languages do not offer sufficient means to denote actual cardinalities. Therefore two new classes of cardinalities and the metamodel annotation mechanism which allows specifying the refined cardinalities in metamodel have been introduced. How the new annotation mechanism can be used to improve the efficiency of pattern matching algorithm has been also shown.

The future work is to identify model transformation domains - the areas where typical patterns are used. The most appropriate pattern matching approaches should be addressed for each domain. That would make the choice of an appropriate model trans-
formation language easier for a concrete task. Another possible research direction is the development of a domain specific annotation language which uses also other information, not only cardinalities. In fact, it means extending the metamodelling language with special features which capture information crucial for pattern matching.

References