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Abstract. This paper addresses the pattern matching problem for model
transformation languages. Despite being an NP-complete problem, the
pattern matching can be solved efficiently in typical areas of application.
A simple pattern matching strategy is proposed for MOLA model trans-
formation language which is efficient for tasks related to the model driven
software development. A more advanced solution is also introduced for
other domains. It is a local search plan strategy combined with the
metamodel annotation mechanism, which allows using the developer’s
knowledge of model constraints that otherwise could be obtained only
by analysis of existing models.

1 Introduction

Model transformation languages are becoming increasingly mature in recent
years and range of the areas where transformation languages are being used
is widening. The growing popularity of transformation languages puts stricter
requirements on their efficiency. Most of the popular transformation languages
are using declarative pattern definition constructs. The main implementation
problem of such languages is the pattern matching. This problem, in fact, is the
subgraph homomorphism problem which is known to be NP-complete. However,
in practice typical patterns can be matched efficiently using relatively simple
methods. The use of different means of pattern definition results into different
implementations of pattern matching for every language. The more sophisticated
constructs a language use, the more complicated becomes the implementation of
the pattern matching. The pattern matching implementation for the graphical
model transformation language MOLA [1] is addressed by this paper.

One of the most popular application domains for model transformations is
Model Driven Software Development (MDSD) related tasks. These tasks have
been tried to be solved in almost every model transformation language, also
in MOLA. In fact, MOLA is designed as a simple and easy readable (therefore
graphic!) model transformation language, which would cover the typical transfor-
mation applications in MDSD. We refer to transformations used in the European
IST 6th framework project ReDSeeDS1 to illustrate the typical MDSD use cases
of MOLA. We present brief overview of MOLA in Section 2.

1 http://www.redseeds.eu
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Section 3 gives a survey of pattern matching strategies used in implementa-
tions of model transformation languages. One of the most popular and also the
most efficient method to solve the pattern matching problem is the local search
plan generation. This method is used by several implementations of transforma-
tion languages, e.g. (PROGRES [2], VIATRA [3], GrGen [4] and Fujaba [5]).
However, each implementation varies in details depending on pattern definition
constructs used in the language. Most sophisticated strategies even use statistical
analysis of model in runtime.

The implementation of the pattern matching in MOLA is discussed in Sec-
tion 4. MOLA also uses the local search plan generation strategies for pattern
matching. We propose simple heuristic algorithm that is efficient for most pat-
terns typically used in MDSD-related transformations. This algorithm can be
used in fast implementations of pattern matching for transformation languages
which use similar constructs to MOLA. However, more advanced algorithms (like
in abovementioned implementations of other languages) should be used to cover
cases, when the simple algorithm does not succeed. Almost all existing algo-
rithms uses cardinalities of metamodel elements to determine the best search
plan, however actual cardinalities are not shown in metamodel. Therefore, we
introduce the metamodel annotation mechanism, which allows using developer’s
knowledge of actual model element cardinalities that otherwise could be obtained
only by analysis of existing models.

2 MOLA

MOLA is a graphical transformation language developed at University of Latvia,
Institute of Computer Science and Mathematics. It is based on traditional con-
cept among transformation languages: pattern matching. The main distinguish-
ing feature is the use of simple procedural control structures governing the order
in which pattern matching rules are applied to the model. The formal description
of MOLA and also MOLA tool can be found in MOLA web site2.

One of the biggest use cases of MOLA is in the European IST 6th frame-
work project ReDSeeDS. One of goals in ReDSeeDS is providing tool support for
MDSD. The Software Case Language (SCL) is used to model the system. The
main parts of SCL are Requirements Specification Language (RSL)[6] and a sub-
set of Unified Modelling Language (UML). Requirements in RSL are scenarios
in a controlled natural language. MOLA is used to specify a transformation from
requirements to architecture and further to detailed design models. Transforma-
tions are divided into several steps generating a chain of models. We have gained
a great experience during this project writing typical MDSD transformations.
Short excerpts from these transformations are used in this paper.

2.1 Short Description of MOLA

A MOLA program transforms an instance of a source metamodel (the source
model) into an instance of a target metamodel (the target model). Source and
2 http://mola.mii.lu.lv
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target metamodels are jointly defined in the MOLA metamodelling language,
which is quite close to the OMG EMOF specification. Actually, the division into
the source and target parts of the metamodel is quite semantic, they are not
separated syntactically (the complete metamodel may be used in transformation
procedures in a uniform way). Typically, additional traceability associations or
classes link the corresponding classes from source and target metamodels; they
facilitate the building of natural transformation procedures and document the
performed transformations.

Fig. 1. Fragment of SCL used in transformation example

Figure 1 demonstrates part of the SCL metamodel used in this section as
a transformation example. It is a simplified version of full SCL metamodel.
As we can see the source and target metamodels are given in the same class
diagram and the separation into source (RSL) and target (UML) metamodels is
quite semantic. The requirements specification (requirement model) consists of
requirements packages which are used to group the requirements in RSL. One of
requirement representation forms is the constrained language scenario. Thus a
requirement may consist of several scenarios written in the constrained language.
The traceability elements play also a significant role in MOLA transformations.
The sclkernel::TraceabilityLink class (particularly, the IsAllocatedTo for mapping
from requirements to architecture) is used for this purpose.

MOLA procedures form the executable part of a MOLA transformation. One
of these procedures is the main one, which starts the transformation. MOLA
procedure is built as a traditional structured program, but in a graphical form.
Similarly to UML activity diagrams, control flows determine the order of exe-
cution. Call statements are used to invoke sub-procedures. However, the basic
language elements of MOLA procedures are specific to the model transformation
domain - they are rules and loops based on rules. Rules embody the declarative
pattern match paradigm, which is typical to model transformation languages.
Each rule in MOLA has the pattern and action part. Both are defined by means
of class elements and links. A class element is a metamodel class, prefixed by the
element (”role”) name (graphically shown in a way similar to UML instance).
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Fig. 2. Transformation example - MOLA procedure building package hierarchy

An association link connecting two class elements corresponds to an association
linking the respective classes in the metamodel. A pattern is a set of class ele-
ments and links, which are compatible to the metamodel for this transformation.
A pattern may simply be a metamodel fragment, but a more complicated situa-
tion is also possible - several class elements may reference the same metamodel
class. A class element may be a reference to previously matched instance. This
reuse mechanism plays crucial role in the implementation of pattern matching.
In addition, a class element may contain also a constraint - a simple Boolean
expression. The main semantics of a rule is in its pattern match - an instance
set in the model must be found, where an instance of the appropriate class is
allocated to each pattern element so that all required links are present in this set
and all constraints evaluate to true. If such a match is found, the action part of
the rule is executed. The action part also consists of class elements and links, but
typically these are creation actions. Instances may also be deleted and modified
in the action part. If several instance sets in the model satisfy the rule pattern,
the rule is executed only once on an arbitrarily chosen match. Thus, a rule in
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MOLA typically is used to locate some fragment in the source model and build
a required equivalent construct in the target model.

Another essential construct in MOLA is the foreach loop. The foreach loop is
a rectangular frame, which contains one special rule - the loophead. The loophead
is a rule, which contains one specially marked (by a bold border) class element -
the loop variable. A foreach loop is an iterator, which iterates through all possible
instances of the loop variable class, which satisfy the constraint imposed by the
pattern in the loophead. With respect to other elements of the pattern in the
loop head, the ”existential semantics” is in use - there must be a match for these
elements, but it does not matter, whether there is one or several such matches.
A loop typically contains the loop body - other rules and nested loops, whose
execution order is organised by control flows. The loop body is executed for each
loop iteration.

Figure 2 shows a typical MOLA procedure written for ReDSeeDS project.
This procedure is a part of transformation which builds sequence diagrams from
requirements written using constrained language scenarios. The task for this pro-
cedure is to build a UML package and traceability link for each requirements
package which contains appropriate requirements. Next, every requirement in
these packages should be processed. Note the similarity of bolded linguistic
constructs used in the description and MOLA constructs - the foreach loop and
reference. This allows describing such algorithms very straightforwardly and eas-
ily in MOLA. The outer foreach loop (the bigger black frame) iterates through
every requirement package, which has at least one requirement with a scenario.
The loophead is the rule containing the loop variable (the uppermost rule in
the loop). The loop variable (pack: RequirementsPackage) is used to explicitly
denote the class to iterate through. A constraint which filters matched instances
is given using the additional class elements (existsUC and cls). It restricts the it-
eration to requirement packages which contain a requirement represented by the
constrained language scenario. This foreach loop contains also a loop body which
consists of a rule and another foreach loop. They are executed in every iteration
of the loop. The rule, which creates a UML package (sPack class element), places
this package into the appropriate top-level package (owningPackage association
link to @p), sets the name of the package and finally creates the traceability
element (ia class element and allocationSource and allocationTarget association
links). The nested loop is a typical approach in MOLA to iterate through con-
tained elements. The inner loop iterates through all requirements (loop variable
uc) which are in the matched requirements package (the reference @pack) and
which contain a scenario (the class element cls).

3 Related Approaches of Pattern Matching

The closest ”relative” to MOLA in the world of model transformation languages
is Fujaba Story Diagrams from Fujaba Tool Suite [5]. Fujaba is a graphical
model transformation language which uses imperative control structures and
declarative patterns. The specification of patterns in Fujaba is almost identical
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to MOLA. There is a restriction on patterns in Fujaba - the pattern must contain
at least one bound (previously matched) element. Graphical syntax, of course,
differs for both languages, but that is obvious for independently developed lan-
guages. The significant difference between the two is the foreach loop. Fujaba
does not specify the loop variable and loop is executed through all of the possible
matches of a pattern. In MOLA only the distinct instances that correspond to
the loop variable are iterated over. MOLA foreach loop is more readable and
easier to use, because of the loop variable.

A different programming paradigm is used in graph transformation language
AGG [7], which is a typical example of a declarative transformation language.
AGG does not have any imperative control structures, and rules that describe
patterns are being executed independently. The only way to affect the execu-
tion order is to use layering. Each rule in AGG includes the pattern which is
specified by LHS graph and NACs. NACs are used by declarative transformation
languages mainly to distinguish already processed model elements. Negative pat-
terns are used differently in MOLA because of the specific loop construct. MOLA
also has negative pattern elements, but they are used to express a ”logical”
negative condition. The graph transformation language PROGRES [2] is a tex-
tual graph transformation language where patterns (graph queries) are specified
graphically. Patterns allow using similar and even richer options than previously
noted transformation languages. The ordering of statements is managed by al-
gebraic structures and PROGRES follows declarative PROLOG-like execution
semantics. Graph transformation language VTCL (Viatra Textual Command
Language), which is part of the VIATRA 2 framework [3], defines patterns us-
ing textual syntax. VIATRA offers broad possibilities for the pattern definition:
negative patterns may be at arbitrary deep level; the call of a pattern from an-
other pattern, and even recursive patterns are allowed; the language may work
both with model and metamodel. The execution order of rules is managed by
ASM (Abstract State Machine) language constructs which are purely imperative.
VIATRA has rudimentary graphical syntax of patterns, however it seems that
whole expressiveness of language may not be available there. Another textual
graph transformation language, which has appeared in recent years, is GrGen
[4]. The expressiveness of patterns in this transformation language is close to
VIATRA. Transformation rules are combined using similar algebraic constructs
to PROGRES (except the PROLOG-like execution semantics).

Almost all model and graph transformation languages that use similar pat-
tern concepts as MOLA are forced to deal with pattern matching task. There
are four most popular algorithms that are used by transformation language im-
plementations to solve the pattern matching problem:

1. Local search plan generation. The search of the instances correspond-
ing to pattern is started from a single instance, which is a potential match. Next,
the adjacent instances are examined according to the given pattern. If examined
instances do not match or another valid match is needed, backtracking is re-
quired. Search plan is the order in which the potential matches are examined. In
other words, search plan is the sequence in which pattern elements are traversed
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in order to find a valid match. The search plan generation algorithm must exam-
ine various search plans and evaluate them in order to choose one that is least
expensive. The algorithm uses a cost model of basic search operations. Then the
search graph based on pattern is built and weights are attached according to the
cost model. At last, the appropriate ordering is determined from the graph.

2. Reducing to CSP (Constraint Satisfaction Problem[8]). The pattern
matching problem is reduced to equivalent CSP. Pattern elements are mapped
to the variables and constraints. This enables to use all the techniques known in
the area of CSP. The main techniques are related to the appropriate ordering of
variables and efficient use of backtracking. Thus, in general both methods, local
search plan generation and reduction to CSP, are quite similar, but CSP puts
more emphasis on intelligent backtracking.

3. Using relational database. Using relational database reduces the pat-
tern matching problem to taking advantage of the power of query optimization
in relational databases management systems. The task is to choose an appropri-
ate database schema to store the model and to generate the SQL query which
returns the valid matches.

4. Incremental pattern matching. The core idea of incremental pattern
matching is to make the occurrences of a pattern available at any time. It requires
caching all occurrences of a pattern and incremental updating whenever changes
are made. If this requirement is met then the pattern matching is made in almost
constant time (linear to the size of result set itself). However, the drawbacks are
memory consumption and overhead on update operations.

PROGRES was the first transformation language addressing the pattern
matching problem[9]. It uses the local search plan generation method. PRO-
GRES builds a pattern graph, where a node is built for each pattern element.
Next, the operation graph is built, adding information about all basic opera-
tions that may be used by pattern matching. The cost of each search operation
is derived from heuristic assumptions and knowledge on multiplicities of pattern
elements. The best-first method is used to determine the search plan from the
operation graph.

VIATRA has been implementing most of pattern matching algorithms. Re-
lational database algorithm for VIATRA uses a separate table for each class [10].
An appropriate SQL query is used for finding the pattern matches.

The generation of local search plans also has been used by VIATRA[11].
The search graph is built for a pattern. An additional starting node is added
to the graph. Directed edges connect the starting node to every other search
graph node. Each edge of the pattern is mapped to a pair of edges in the search
graph, expressing the bidirectional navigability. The cost model is obtained by
analyzing the existing models of the domain, e.g. typical UML class diagram, if
the UML class diagram is being transformed. The collected statistics illustrate
an average branching factor of a possible search space tree, built when pattern
matching engine selects the given pattern edge for navigation. Costs are added
to the search graph and the minimum spanning tree (MST) is found with the
starting node taken as the root node. The search plan is determined from MST.
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An incremental pattern matcher[12] (RETE network) is constructed based
on the pattern definitions. Before transformation the underlying model is loaded
into incremental pattern matcher as the initial set of matches. The pattern
matching is performed efficiently; however the changes should be propagated
within the RETE network to refresh the set of matches.

The authors of VIATRA have introduced a hybrid pattern matching ap-
proach[13], which is able to combine local search and incremental techniques on
a per-pattern basis. Two scenarios are proposed: design-time selection of strat-
egy by developer and runtime optimization based on monitoring of statistics
(available memory or model space statistics).

GrGen uses very similar local search plan generation method[14] to VIA-
TRA. The plan graph (search graph by VIATRA) is built in a similar way, but
lookup operation for pattern edges is added. The cost model is built based on
statistics collected from the host graph (model) just before the execution of the
transformation. The costs are added, the MST calculated, and search plan is
determined in a way similar to VIATRA.

Fujaba uses less advanced local search plan strategy[15]. The pattern match-
ing in Fujaba is started from the bounded element (the requirement in Fujaba
is to have at least one per pattern). If there is more than one bounded element,
one is chosen arbitrary. Links to follow are chosen by priorities using the first-
fail principle. Regardless of simplicity of this algorithm, the benchmark tests[16]
show that this strategy works almost as good as more advanced algorithms.

AGG uses an algorithm, equivalent to current pattern CSP[17]. This ap-
proach introduces variables for each pattern node and queries for each pattern
edge forming the constraint graph. This graph is quite similar to the search
graph in local search graph generation technique. Variable ordering used in the
area of CSP is essentially the same as the concept of the search planning.

The popular model transformation languages ATL[18] and MOF QVT[19]
are not addressed here, because to our knowledge no pattern matching imple-
mentation details are available for them.

4 Pattern Matching in MOLA

The implementation of MOLA uses a lower level model transformation language
L3 [20] as the target language for compilation. It provides the basic operations
on models and its implementation is oriented to the maximum execution ef-
ficiency and performance. Of course, the performance depends also on model
repository the language uses. Currently high efficiency repositories MIIREP [21]
and JGraLab [22] are supported as well as Eclipse Modelling Framework (EMF).
L3 language allows creating and deleting instances and links, updating attribute
values, iterating through instances, and checking the values of attributes. L3
also includes the classical constructs like loops and branching. It is a purely im-
perative language where patterns are also expressed in an imperative way. At
the same time it is powerful enough to serve as a target language for MOLA
compiler.
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The basic model lookup operation (first) in L3 allows binding a pointer to
an instance of the appropriate class. This operation creates an iterator which
allows going through all instances of this class. What is more important, L3
allows creating an iterator from already bound instance using navigation by
some association. Additionally, constraints can be specified that narrows the
set of instances to be iterated over, e.g. constraint on attribute value (attr) or
existence of link (link) to the already bound instance. In fact, there is the hidden
backtracking step. The composition of basic lookup operations is allowed. Let
us explain the following L3 code:

first z:Z suchthat
first x:X from z by R suchthat attr x.a<10;

It means - bind an instance of class ”Z” to the pointer ”z” if there is an
instance of class ”X” connected to ”z” by link of type ”R” and it has the value
of attribute ”a” less than 10. The first command iterates through all instances of
the given type until an acceptable instance is found. The nested first commands
are used to form advanced constraints. Failure of a nested first-suchthat com-
mand causes a backtracking step. In such a classical way all potential matches
are examined until one which fits is found.

Pattern matching implementations of other transformation languages also
use similar basic lookup operations. For example, the first-suchthat command
corresponds to the GetInstance operation used by PROGRES[9] or the lkp op-
eration used by GrGen[14].

The most obvious way to compile a MOLA pattern to these operations is to
start from one (chosen by some algorithm) class element and traverse the pattern
graph. The result of such compilation is a first command created for the initial
class element and nested first commands for other class elements. It is obvious
that the same pattern can be matched in different ways using the basic lookup
operations. Finding the most efficient way (the optimal search plan) is the main
task for pattern matching.

4.1 The Simple Pattern Matching Algorithm for MOLA

As it was mentioned in the previous section, implementation of pattern matching
for MOLA uses the local search planning strategy. This is one of the most popular
strategies, however typically it requires sophisticated analysis of pattern or even
underlying model to choose the best search plan. We propose a simple algorithm
(in the sense of how complex is the implementation) which is efficient for the
typical MOLA patterns used in MDSD-related tasks (it is efficient also for others
if appropriate constructs are used). The simple algorithm uses the following
principles:

– if the pattern contains a reference class element, then the pattern matching
starts from the reference (if there are more than one, then an arbitrary is
chosen).
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– otherwise the pattern matching starts from the loop variable in the loophead
or from arbitrary chosen element in the normal rule.

– the pattern matching is continued with class elements accessible from already
traversed class elements by association links.

Pattern matching in a regular rule is started from the reference class element,
if such class element exists in the pattern. Though MOLA does not require the
presence of a reference class element in the pattern, the practical usage of MOLA
has shown that most of the regular rules contain it. It is because the usage of
imperative control structures causes reuse of the previously matched instances,
which are represented by the reference class elements in MOLA. This is one of
the main reasons why such simple optimization technique works almost as well
as more sophisticated approaches.

Use of reference class elements is natural also in loopheads. It is common to
have a loop over, for example, all properties of a given class. This task can be
easily described, using a single MOLA loop, where the pattern in the loophead
is given using the reference class element and the loop variable. See the loophead
of the inner loop in Figure 2 for the typical case. In this case the pattern match-
ing is started from the referenced element (@pack) reducing the search space
dramatically. Of course, the path from the reference class element to the loop
variable may be longer. The only restriction is that cardinalities of associations
along the path (except one directly before the loop variable) should be ”1” or
”0..1”.

For foreach loop statements without reference in the loophead, pattern match-
ing is started from the loop variable in the loophead. Practical usage of MOLA
has shown that typical tasks are naturally programmed using patterns, where
cardinalities of association links leading from loop variable are ”1” or ”0..1”.
This causes the execution of the loop to work in a linear time dependant on
the number of the instances corresponding to the loop variable. Of course, this
does not apply for every example, but if an appropriate metamodelling (UML-
like, using composition hierarchy) and imperative algorithms are used, then this
condition holds for most cases.

Note the loophead of the outer loop in Figure 2. Though cardinalities of
association links leading from the loop variable are ”0..*”, the pattern matching
started from loop variable is still efficient. Since class elements other than loop
variable provide the ”existence semantics” (find first valid match), in practice
this loop works also in linear time because almost all requirements are described
using scenarios. In fact, this additional constraint is used to filter out those few
cases where requirements are described using different means.

Note that this strategy does not even require analysis of the cardinalities of
metamodel elements at the same time remaining efficient in the practical usage.
A similar pattern matching strategy is used also by Fujaba. The bound variable
(reference class element in terms of MOLA), is even required by the pattern
in Fujaba. However, the benchmark tests [16] have shown that this strategy
performs as well as more sophisticated strategies. The same tests also have shown
that an appropriate usage of the language constructs (improvement of Fujaba
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transformation) causes significant positive impact on the performance. The same
holds also for MOLA, however the feature which distinguishes both languages
is the loop variable in the MOLA foreach loop. First of all, the transformation
becomes more readable for human reader, secondly, it gives slight advantage
in the performance of the pattern matching. It allows iterating through the
instances corresponding to the loop variable only, while other patterns elements
are checked just for the existence. On the contrary, Fujaba is forced to examine
corresponding instances to all pattern elements in the foreach loop.

4.2 Empirical Study of Pattern Matching Cases in ReDSeeDS
Project

In this section the analysis of typical patterns in the ReDSeeDS project is done.
As it was mentioned before, one of the goals of the project is model driven soft-
ware development using RSL and UML languages. The main idea is to obtain a
part of the software system automatically from requirement specification using
model transformations. During the ReDSeeDS project two model-based method-
ologies have been proposed and corresponding sets of transformations in MOLA
developed.

To approximately estimate the volume of the transformations written during
the ReDSeeDS project we are giving some statistics. The model-based method-
ologies used in the project cover quite a large subset of UML being generated
- UML class, activity, component and sequence diagrams are being generated.
Both methodologies include several transformation steps. The first step for both
methodologies is the transformation of requirements. The next steps are gen-
erating new UML models adding more specific details. There are ∼350 MOLA
procedures developed during the ReDSeeDS project. They include ∼200 loops
and ∼800 rules that gives ∼1000 pattern specifications. We have investigated
the structure of patterns used in the project and most of them are fit to the
simple pattern matching strategy used by MOLA.

Figure 2 refers to the typical usage of loops in ReDSeeDS project - the model
driven software development tasks are compilation-like jobs where every element
of the source model is processed and corresponding elements in the target model
are created. Since RSL and UML model elements form tree-based hierarchy,
the transformation algorithms traverse model elements in the top-down style
starting from the top elements of the hierarchy. Therefore, the most natural
way to describe such traversing is by using nested foreach loops referencing
the previous loop variables. The pattern may contain additional class elements
for collection of all necessary neighbourhood instances or specifying additional
constraints on the existence of appropriate nearby instances.

Another typical pattern used in the ReDSeeDS project is depicted in Figure
3. This pattern finds the name of an actor (names are coded as noun phrases in
RSL). Note, that all associations leading from the Actor class to the Noun have
cardinality ”1” or ”0..1” - each actor has exactly one name (represented by noun
phrase), there is only one noun link for each noun phrase and every noun link
is connected to exactly one noun. Therefore this pattern is matched in constant
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Fig. 3. Pattern example - collecting nearby instances

time when the simple pattern matching strategy is applied. This is a typical case
where MOLA rule is used to collect the nearby instances.

A variation of the previous pattern is shown in Figure 4. This pattern de-
scribes the collecting of nearby elements of a UML interaction. The owning
classifier and component corresponding to the lifeline named ”UIComponent”
should be matched. Unlike in the previous example there is an association with
cardinality ”*” leading from the referenced element (to Lifeline). However, as we
see in practice, typically there is only one model element in the model satisfy-
ing the given constraint and the ”suspicious” association has low cardinality in
practice. In this case there are no more than 5-10 lifelines per interaction. Thus
this pattern matches in linear time with regard to the number of lifelines in the
given interaction, which is relatively low.

Fig. 4. Pattern example - collecting nearby instances using additional constraints

We have tested the transformations on several sufficiently large software
cases developed within the ReDSeeDS project. The total time of transforma-
tions execution turns out to be almost linear with regard to the total number
of constrained language sentences in the requirement scenarios specified in the
RSL for the case. The patterns described above are the most typical patterns
used in MOLA transformations for the ReDSeeDS project. The total amount
of such patterns is about 95% of all patterns. Some specific sub-tasks require
non-typical patterns which theoretically may cause insufficient pattern match-
ing performance, however in practice they are performed on elements which are
relatively low in number compared to the number of constrained language sen-
tences. Thus, they do not affect the overall performance of pattern matching.

There was made a conjecture that a transformation program in MOLA writ-
ten in an appropriate style becomes efficient at the same time [23]. Our em-
pirical analysis of typical patterns in the ReDSeeDS project confirms that this
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holds also in praxis and MOLA is a suitable model transformation language for
MDSD-related tasks. In this case the simple pattern matching algorithm gives
very efficient results.

4.3 Local Search Planning Using Annotated Metamodels

MOLA language can be used not only in the MDSD-like domains, where pat-
terns are similar to those described in the previous section, but also in others. A
more advanced pattern matching technology should be used to support efficient
matching of these patterns. The classical local search planning approach is used
in MOLA for these cases. We are also building a local search graph and calculat-
ing minimal spanning tree. The analysis of corresponding metamodel fragment
is made for each pattern to get weights for edges of the local search graph. In
general, our approach is similar to the one used by PROGRES and it is currently
implemented partially.

The search algorithm described above optimizes the search plan selection us-
ing only data from the metamodel and pattern specification. Other approaches
that are based on the statistical analysis of the model collect actual cardinalities
for classes and associations (the number of instances of the given class in the
model). These approaches give very efficient results, however there are situations
where such analysis can not be made (e.g. runtime repository does not support
the required statistics for runtime analysis or there are no models created yet in
the case of offline analysis). Therefore we propose an approach which allows us-
ing developer’s knowledge of model constraints that otherwise could be obtained
only by analysis of existing models. A part of actual cardinalities can be already
predicted at the design time of a transformation. Development of a transfor-
mation requires a good knowledge of the corresponding domain. Therefore, the
transformation developer should be able to define prospective cardinalities. Of
course, precise number of the instances cannot be predicted, except for singleton
classes. However, the proportion of instances for different classes is frequently
known. For example, the number of properties in UML model is several times
greater than the number of classes. Since neither metamodelling standard MOF,
nor UML class diagrams provide convenient means for the specification of the
prospective cardinalities, we propose to annotate the metamodel and patterns
in MOLA. Our goal is to have a simple, handy annotation mechanism that helps
to select an efficient search plan for the pattern matching.

We allow annotating classes and association ends in the metamodel and class
elements and association link ends in patterns. An annotation predicts the num-
ber of instances for classes and the number of instances reachable by links for
association ends. Pattern matching algorithm takes into account the annota-
tions, and edge weights in the search graph are adjusted accordingly. In fact,
an annotation sets the priority on the pattern element. The lower the predicted
number of instances is for the pattern element, the higher priority it gets for
the pattern matching. Annotations made in the metamodel affect the pattern
matching algorithm in every rule where pattern elements of the corresponding
type are used. Annotations made in the pattern affect the pattern matching
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algorithm only in the scope of the rule. The developer annotates metamodel el-
ements during the development process of the metamodel. Since metamodelling
requires the knowledge of the modelled domain, typically there are no problems
to resolve actual cardinalities. It should be noted that the annotations are op-
tional - they are additional means to improve the efficiency of transformations.
The following annotations can be used:

SINGLE - denotes that the class (or navigation result) has at most one
instance. Such instances and links as well as references are preferred for the
pattern matching.

FEW - denotes that the class (or navigation result) has nearly constant
number of instances, or it is relatively low compared to the total number of
instances in the model. For example, we can expect that in a UML class diagram
a typical class will have about 5-10 properties, and this number is independent
of the model size. Such links will be preferred over links that are not annotated
for the pattern matching.

MANY - denotes that the class (or navigation result) has a relatively large
number of instances, and this number grows together with the size of the model.
For example, in a UML class diagram the number of typed elements for every
type grows as the size of the class diagram increases. Links that are not anno-
tated will be preferred over links with the ”MANY” annotation for the pattern
matching.

Figure 5 shows a pattern in a loophead where annotations help to find the
best search plan. This loop iterates trough every property (p) of the given class
(@c) having the given type (@t). The problem is that associations ownedAt-
tribute and typed both have cardinality ”*” and without additional information
both are treated equally (un)efficient for pattern matching. However, in practice
the average number of owned attributes for a class is by magnitude less than
typed properties for a type. Therefore, adding annotations FEW and MANY to
ownedAttribute and typed association ends accordingly gives the desired result -
the pattern matching is started from the reference @c.

Fig. 5. Pattern example - annotation use case

5 Conclusions

We have made a review of pattern matching mechanisms for the most popular
model transformation languages in this paper. There are several pattern match-
ing approaches, but the most popular is the local search planning. In fact, it is
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the most universal strategy - it gives efficient results for different types of pat-
terns. However, implementations of more advanced approaches are rather com-
plex, although simpler strategies (like in case of Fujaba) frequently give similar
results. Of course, that holds not for every use case, but mostly for the domain
the transformation language is designed for. For example, MOLA is efficient for
MDSD-related tasks, as the empirical analysis of typical MOLA patterns in the
ReDSeeDS project has shown. Other languages are efficient in other domains,
e.g. VIATRA in the simulation of complex systems or Fujaba in the program
refactoring domain.

A great role for efficient pattern matching is plaid also by the constructs of
the pattern used in the language. MOLA offers very natural means for describing
MDSD-related tasks, the foreach loops combined with explicit reference mecha-
nism. At the same time even the simple pattern matching algorithm which has
been implemented for MOLA works efficiently in these cases. Thus, for the com-
piler -like tasks, where every element of a structured model (like UML) should
be processed, MOLA can be used in a natural way with a high efficiency with
very simple implementation of pattern matching.

MOLA is used not only for MDSD-related tasks(though it is designed for
that). Therefore we have considered also more universal pattern matching strat-
egy based on analysis of the pattern and underlying metamodel. The local plan
search algorithm is partially implemented in the latest version. We have in-
troduced the metamodel annotation mechanism, which captures the domain
knowledge of actual cardinalities in the metamodel. It permits to make pat-
tern matching more efficient, that could be achieved only by runtime analysis of
models which may itself be costly at runtime or not available at design time.

The future work is to identify model transformation domains - the areas
where typical patterns are used. The most appropriate pattern matching ap-
proaches should be addressed for each domain. That would make the choice of
appropriate model transformation language easier for a concrete task.
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