
A Proxy Approach to External Model Repository
Integration in Eclipse EMF Infrastructure

Oskars Vilitis1, Audris Kalnins

Institute of Mathematics and Computer Science, University of Latvia, 29 Raina boulevard,
Riga, LV-1459, Latvia, ph.: (+371) 6 7224 363

Oskars.Vilitis@gmail.com, Audris.Kalnins@mii.lu.lv

Abstract. Eclipse Modeling Framework (EMF) has become a very popular
environment for the implementation of a structured model, which has resulted
in increased need for integration with other modeling environments. In this
paper, we describe a method for direct integration of external model
repositories in the EMF infrastructure. Our approach is based on the application
of the proxy pattern to extend the functionality of EMF base objects and to
provide a runtime synchronization of the model data with the repository.
The approach presented here allows existing applications to interchange model
data seamlessly with EMF, thus giving access to the services offered by EMF
technologies. On the other hand, EMF-based applications can benefit from the
services provided by external repositories and applications (for example,
efficient model-to-model transformation implementation) without the need to
adjust the application code. Applicability of the solution introduced is analyzed
at the end of the paper. The approach has been successfully applied in the
metamodel-based tool building platform METAclipse.

Keywords. Eclipse, EMF, Integration, Model Repository, MDA, MDE,
MDSD, Real-Time, Synchronization

1 Introduction

Model-Driven Architecture (MDA) [1] concepts have been around for quite a while
now and currently many software platforms, frameworks, tools, and applications work
with models and model repositories. Various tools and frameworks provide a wide
range of services for operation with models: transformation languages (both model-
to-model and model-to-text), model querying and validation facilities, different
persistence solutions, code generation, etc.

1.1 Features of the EMF Family Technologies

One of the most popular modeling frameworks currently is Eclipse Modeling
Framework [2] (EMF). Having started as a MOF [3] implementation, EMF has gone
its own way and relies on its own metamodel ECore, which is very similar to EMOF
(Essential MOF), a subset of the MOF. In fact, there are just some small, mostly

1 supported partially by ESF (European Social Fund),

project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

notational, differences between those two. By bringing an efficient implementation of
the core subset of the MOF API to the developers, EMF has quickly become a de-
facto standard of model handling in Eclipse-based tools, and is also becoming popular
outside Eclipse in standalone applications.

EMF is widely used as a tool for the implementation of a structured model.
However, this is not the only functionality the family of EMF technologies has to
offer. By introducing an efficient and standardized approach to model handling, EMF
has promoted the evolution of various EMF-based projects supporting the model-
driven engineering process (such as EMF Query [2], EMF Transaction [2], OCL
implementation [4], validation component [2], and various transformation language
implementations, e.g., ATLAS Transformation Language ATL [5] for model-to-
model transformations and JET for model-to-text transformations).

Other Eclipse frameworks and tools are built to operate on EMF models, allowing
rich graphical editing of the models (like GMF [6]). There are a number of practical
Eclipse applications built that even further extend EMF model handling possibilities
and applicability of EMF models. Among those are various persistency and O/R
mapping solutions (such as CDO and Teneo [7]), the MDSD supporting framework
openArchitectureWare, and even commercial development and design tools like IBM
Rational Software Architect, etc. The stack of technologies in the EMF family and the
supply of tools operating on EMF models are growing continuously.

1.2 Motivation for the External Repository Integration in EMF

Having such a rich set of services available, EMF is an appealing environment for
model handling. Existing applications can benefit from allowing their models to be
transferred to EMF and back. For example, such interoperability could add missing
features to existing model environments when needed, enabling XMI model
serialization (provided by EMF as the default serialization mechanism), validation of
the model against a defined rule set, code generation functionality or model-to-model
transformations, the possibility to develop graphical model editors, etc.

Not only existing applications can benefit from integration with EMF. Another
benefit of the external repository integration in EMF is the possibility to use
additional services from EMF-based tools. In fact, this was the main reason why EMF
proxy classes were developed at the Institute of Mathematics and Computer Science
at the University of Latvia. We integrated our own model repository MIIREP [8] with
EMF, so that our EMF-based tool METAclipse [9] (metamodel- and transformation-
based graphical DSL-editor building platform) could gain access to our model-to-
model transformation engine and use our transformation language MOLA [10, 11].
These transformations are compiled to C++ code and work on the MIIREP repository,
which is specialized particularly for efficient execution of the operations needed by
transformations. By this integration we gained the performance needed for
transformations to work on huge models in a very efficient way.

The alternative to integration would have been transferring the MOLA
transformation language to Java, so that it worked on EMF objects directly. This,
however, would have meant massive work on a new implementation of MOLA and
would have required much more effort. Furthermore, the transfer of MOLA itself
would not have guaranteed the possibility to measure up with the efficiency of C++

implementation. Also, it would not have been sufficient to have only model import /
export functionality, as in the case of METAclipse interaction with the repository is
very dynamic. Each instance of user interaction with METAclipse results in the
execution of some transformation, so a very rapid access and change of repository
objects is required from both the Eclipse editor and the MOLA transformations.
Therefore, integration of the existing repository was the most reasonable choice.

Another motivation for integration worth mentioning is the possibility to unite the
EMF with different other model-handling frameworks, such as MDR [12], MS DSL
[13], Generic Modeling Environment [14], and Fujaba [15]. All these frameworks are
meta-model-based, and their meta-meta-models provide similar capabilities to EMOF.
They all can handle models similar to EMF, and each provides distinctive features for
model handling. For example, GME provides advanced facilities for building model-
based simulators and debuggers, while MS DSL provides easy integration with
Microsoft technologies. The features of each framework can turn out to be useful for
EMF models. There are therefore good reasons for uniting them. There already exists
such an attempt: Eclipse project GEMS [16] binds the GME to EMF.

1.3 Integration Solutions

In general, tool integration problem has been a topic of discussions and publications
already for a long time. A survey [17] shows that the tool integration topic is very
wide. Most of the covered papers discuss the integration problem generically. This
paper, however, concentrates on the integration solution for a specific technology,
namely EMF, fulfilling more stringent requirements than in the general case.

There already are some examples of model interchange between EMF and other
technologies, based on the import and export of models. In the simplest cases it is
done through some format supported by both EMF and the external repository (such
as XMI), but others make use of the native repository APIs. Some of these are the
integration of EMF with ARIS [18], MS/DSL [19] tools, GME [20], and EMT [21].

There is one significant problem with the import / export approach. In this process,
the model is first exported, resulting in a copy of the model. Then changes to the copy
are made, after which the modified copy is imported back in the model. If the whole
model is transferred, this process is not complicated. However, usually models are big
and it is inefficient to transfer them in their entirety. Normally, only a sub-set of the
entire model needs to be exported for external modification. In this case, a huge
problem is the merging of the transformed sub-model back into the original model.
The main problem is that there can be references from the unmodified parts of the
model to some parts of the model that have been deleted or changed. These references
need to be traced and modified; sometimes perhaps redirected to newly created
elements. This is not an easy task and requires knowledge of both the original and the
modified models, and sometimes even about model transformation logic.

Another characteristic of the import / export approach is that it can support the
integration needs only if the model transfer from one technical space to another is
relatively infrequent (for the batch processing of the models). If more rapid model
data interchange is needed, other integration solutions should be considered.

In this paper we describe another approach to model data transfer, namely, direct
integration of the external repositories with the EMF environment. In addition to the

features provided by import / export and bridging of the technical spaces, the
approach presented here allows lazy data loading and synchronization (only the
relevant data will get transferred to and from EMF) and dynamic model integration in
EMF (operations on external models can be carried out at runtime). The solution also
does not create any problems with merging, as modifications of the model are carried
out directly in the original model, and no export, import and merging are needed.

The main idea behind our approach is to alter the original implementations of the
core EMF objects in such a way that they start acting as proxies to the external
repository, and each operation on the EMF model is redirected to the corresponding
operation(s) on the external repository. Any changes done to the model at the runtime
outside the EMF are properly notified to listeners through the EMF notification API.
More detailed description of our solution is presented in section 4.

Summing up, the presented integration approach allows existing applications to
gain the benefits of the services offered by the EMF tools and vice versa. For
example, in the context of transformation languages, applications not offering
transformation languages can use the transformation languages operating on EMF
models. On the other hand, EMF tools can use the transformation languages offered
by external applications in order to gain efficiency and improve performance.

In further sections of this paper we will describe the proxy approach to repository
integration in more detail. Section 2 will introduce the objectives of the integration
approach proposed. Section 3 will demonstrate how the Proxy pattern can be applied
in order to achieve the integration goals. In section 4 we will give more details on
integration implementation and in section 5 we will present some exemplary
applications of the offered integration approach.

2 Objectives of the Integration

The goal of our proposed repository integration solution is to provide a bridge
between the external repository and EMF that would possess the same characteristics
as import / export solutions (possibility to transfer the model data from the external
repository to EMF and back), but at the same time would provide more sophisticated
features, such as the ability to carry out the transfer of model data dynamically, as the
models are changing during the runtime. Here we focus only on cases, where the
meta-metamodel (M3) concepts of the application can be easily mapped to the meta-
metamodel of EMF, namely ECore (otherwise, non-trivial model transformations
would be required).

There has to be a possibility to synchronize models between the external repository
and EMF, propagating changes made on either side to the other in real time. It must
be possible to carry out synchronization in both directions. If the change is made to
the synchronized model directly in the external repository by some external
application, it must be transferred to the EMF and proper EMF notifications have to
be called. And vice versa, if the change is made to the model by EMF, it must be
transferred also to the external repository.

That being said, it must be noted that currently no objective has been established to
allow simultaneous changing of models by external applications and by EMF – the

presented solution presumes that if there are changes on both sides, they are always
sequential rather than parallel, and no concurrency is supported.

Another aspect to be considered is that we do not want to impose any additional
requirements to the applications using the EMF code. This means that the EMF
interface has to remain intact and applications already using the EMF classes should
not have to change significantly if it was required for them to synchronize their model
data with an external repository.

3 Applying the Proxy Pattern

Taking into account the aforementioned goals, an appropriate method for the
implementation of external repository integration with EMF is the proxy pattern. The
basic idea of this pattern is to provide a façade for another object in order to control
the access to it. As Design Patterns book [22] suggests, some of the most typical cases
when the proxy pattern is used are when:
1. it is necessary to provide a local representation of a remote object (remote proxy);
2. objects are expensive to create and should be created on-demand (virtual proxy).

Relating this to our goals, we want the EMF to act as a façade to the external
repository and delegate the calls to the external repository API. To be more specific,
what we need is a remote proxy with the features of the virtual proxy. The utilization
of the remote proxy is obvious. The virtual proxy features are needed, because models
tend to be very big, making it desirable to transfer to EMF only those objects that are
really needed. Additionally, for increased performance, the caching mechanism needs
to be implemented so that subsequent access to the object properties would result just
in a single call to the repository API functions. See Fig. 1 for the class diagram of the
proxy pattern adjusted to our needs.

Fig. 1. Structure of the proxy pattern

applied for the bridging of EMF and the external repository

The figure depicts only high-level structural elements. The client is any application
using proxied EMF objects. It is accessing the EMF object interfaces (only the root
interface EObject is displayed with basic representative methods eGet and eSet, but it
could be any sub-interface of EObject in ECore metamodel or any generated EMF
class interface). As EMF has a top-level object defined in its metamodel, namely

EObject, it is enough to provide the proxy implementation for this object to get the
proxy functionality spread throughout all EMF metamodel implementation classes.

Extension EObjectProxy of the EMF EObject interface implementation
EObjectImpl acts as a proxy to the external repository API. This class implements the
“remote” and “virtual” features of the proxy pattern by delegating the calls to the API
of the external repository and providing a cachedData map that is consulted before
calling the actual repository API functions.

ExternalRepositoryAPI class is the one being proxied. The difference between the
variation shown in Fig. 1 and the original proxy pattern is that the external repository
API does not implement the same interface as the proxy. It is possible that some calls
to the EObject will result in multiple calls to ExternalRepositoryAPI, possibly even
with some model transformation involved. However, external repository API cannot
be absolutely arbitrary. It must operate with the same concepts as EMF, i.e. its
capabilities must be isomorphous to EMOF. Therefore, it can be said that it
“isomorphically” still implements the same interface as proxy.

By applying the proxy pattern we can solve the synchronization problem in one
direction—from EMF to the repository. However, changes done in the external
repository by external applications must be transferred back to the EMF, as both sides
can actively change the models. For this reason, an additional change notification
mechanism is needed. Such mechanism will be described in the next section
(subsection 4.2) together with technical details of application of the proxy pattern.

4 Implementation of the Proxy for EMF: “Wise” Objects

Having established how to apply the proxy pattern, we can proceed to the technical
details of the actual implementation of the proxy to the external repository. We will
be giving the description based on the experience we had while integrating our
repository MIIREP [8] with our EMF-based graphical model editing tool
METAclipse [9], where the proxy approach to integration is already successfully
implemented and working (see section 5 for more information about METAclipse).
The actual implementation of the EMF proxy will differ from repository to repository,
as there will be differences in repository APIs. Still the concepts of the integration
will remain the same. Technical description of METAclipse, including some specific
details about MIIREP and EMF integration is given in [23].

In case of integration of MIIREP in EMF, changes to the model can occur as a
result of both model transformations working directly with the repository API and the
METAclipse tool working with the EMF representation of the model. Therefore, both
kinds of synchronization are involved—from the repository to EMF and vice versa.

4.1 “Wise” Objects as an EMF Extension

EMF ECore metamodel classes (ECore base classes) define the class hierarchy that
forms the basis for the Java runtime. All EMF runtime classes generated for a
particular metamodel extend these base classes. ECore base classes provide all the
functionality to the generated classes and allow using them in EMF infrastructure by
providing all the EMF framework features. Consequently, base classes are the best

place where repository synchronization should be implemented and, as it has already
been roughly sketched in section 3, EMF proxies are implemented as an extension of
the original EMF ECore objects, providing an alternative EMF runtime.

New proxy objects conform to EMF interfaces and externally look like normal
EMF objects, but internally do all the synchronization with the repository. These
objects were named “wise” objects, as they show certain “intelligence”: though from
the interface perspective they look like normal EMF objects and support all EMF
framework operations, internally they know when and how it is necessary to read or
write information to the repository. For EMF tools “wise” objects can be considered a
second level of repository abstraction, which introduces the caching mechanism,
conforms to the EMF object interfaces and uses first level abstraction—repository
interface—to read and write data to the repository.

Base ECore classes were extended and a set of “wise” object base classes was
defined (see Fig. 2). By analogy to ECore classes, base “wise” object classes, together
with some helper classes comprising the whole “wise” object concept, were called
WCore. In WCore, the methods inherited from ECore for accessing the properties are
extended with functionality of reading and writing data from and to the repository.
For increased performance, “wise” objects keep track of the state of every object
property and cache the data from the repository in the object instance, so that
subsequent reads of the same property would require just a single repository access.

The fact that the parent of all ECore classes is a single class—EObject (see [2] for
complete ECore structure)—simplified the extension of ECore. For “wise” object
needs it was enough to extend just two ECore classes, EObject and EFactory, with the
corresponding WObject and WFactory classes. WObject contains all the caching and
synchronization logic and, as it is the superclass of all the other framework classes,
the logic is available all across the framework. The WFactory extension of the factory
class is needed, as some initialization of the “wise” object on its creation is required.

Fig. 2. “Wise” object dependencies

To put the WCore classes in action also for the generated code, the EMF generator
had to be extended so that it produced “wise” objects extending WCore base classes.
The EMF framework uses so-called dynamic code templates during the generation
process of the runtime classes. The EMF generator reads the serialized form of the

metamodel and then, using the set of templates, generates the runtime classes (see
Fig. 2). Default templates producing EMF runtime classes were extended so that they
would generate the code using WCore instead of ECore.

The complete set of classes comprising the WCore can be seen in Fig. 3. The
above-mentioned extension of getter and setter methods of ECore is divided into two
classes. Reading of the attributes from the repository was easiest to implement in the
WObjectImpl class itself, in the inherited getter methods. Writing the attributes,
however, was easier to move to a separate class WObjectChangeObserver, which
implements the EMF change listener and is attached to every instance of WObject.
The change observer listens to any changes done to the WObject from the EMF side
and whenever one occurs, writes the data to the repository.

Fig. 3. WCore class diagram

To be able to read and write the repository data, “wise” objects need to have a
possibility to map the classes, attributes and associations to the corresponding
repository objects. Such mapping can be defined only at the M2 layer and thus it is
needed to have the WCore class and feature mapping to the repository metadata at the
M2 layer. As it is inefficient to read these mappings every time an object is accessed,
class metadata mappings are cached. The WRepositoryMetadata object represents the
class metadata. The map of WCore class to repository metadata mappings is held in
the WRepositoryController object.

The two objects directly responsible for the synchronization of the model in the
repository and in its representation in EMF (WObject and WObjectChangeObserver)
act on the events of reading or changing the model information through the EMF API.
When any operation on the model is performed, it translates the EMF API call to the
corresponding call(s) to the repository API. It is easy to do this if the repository relies
on a metamodel that is very close to the EMOF. However, the less the repository API
resembles EMOF, the harder it becomes to map the EMF calls to it and the more
intelligent transformations are necessary.

4.2 Repository Change Notification

Extending the ECore base classes covers the synchronization needs only from the
EMF perspective, i.e., this part of the solution is applicable only when changes to the
model are made from the environment working with EMF classes (wise objects).
However, model changes can happen also on the other side (in the case of the
MIIREP integration in METAclipse, the most intense changes to the model are made
by the transformations in the repository directly). So, besides the proxy pattern
applied to EMF objects, another missing piece is change notification back from the
repository, which would trigger the EMF change events for all objects that have been
changed.

The change notification is not a trivial task, as it is also constrained with tight
performance requirements. It is very inefficient to detect the changes when they have
already been made, as it requires inspection of all object instances in the repository.
This means that support from the side of the repository or the tool performing the
changes is required in order to implement efficient change notification.

In WCore, the WRepositoryController class (see Fig. 3) takes care of the repository
model change tracking. There, a special method is defined for change detection,
which has to be invoked after each change made to the model directly at the
repository (what is calling this method depends on how the integration of the external
repository is used). The implementation of the WRepositoryController, however, is
strongly dependent on the possibilities offered by the repository being integrated.

For each repository the change tracking mechanism is different, as the possibilities
of detecting changes differ from one to another. The worst case is if the external
change source is making unpredictable changes in the repository and the repository
itself does not provide any change tracking mechanism. In this case there are only two
options: introduce a layer between the external tool and the repository that will
implement the change tracking mechanism or, if the performance requirements allow
it, do a full re-scan of all model elements residing in the repository and detect which
elements and how have been changed. One possibility for the implementation of the
change-tracking layer is to use aspect-oriented programming (AOP) in order to
execute the change tracking code before or after repository API function calls.

A slightly better situation occurs when some kind of an algorithm exists that limits
the number of the model elements to consider while detecting the changes. The best
scenario, however, is when it is possible to rely on a repository-native service that
allows explicit detection or monitoring of the changes by either defining the listeners
on the repository objects or calling some method that returns the set of the changes.

To support the various scenarios of how the change detection can happen,
WRepositoryController defines an abstract change notification method returning lists
of the changed or deleted objects. Functionality of tracking changes is left to the
implementations for individual repositories. When changed or deleted object lists are
read from the repository, WRepositoryController issues the corresponding EMF
notifications and the modified features of the object instances that have changed are
tagged “dirty,” so that they are once again read from the repository when accessed
instead of using the cached values from the WObject instances.

In case of the repository and transformations currently used in METAclipse, it was
very easy to track object deletions, as the MIIREP repository itself has the

functionality to track such changes. However, the tracking of the changes to the
existing objects had to be incorporated in the transformations. Each transformation is
responsible for maintaining the lists of the changes to be returned to the
WRepositoryController.

5 Applicability

As already mentioned, the main force that drove the development of the approach
presented was the necessity for the use of an external repository in the METAclipse
tool. This demonstrates a case when the discussed integration approach is applied to
make extra features provided by an external repository available in EMF.
METAclipse, presented in [9], is a metamodel-based graphical tool building platform
for the development of domain-specific language (DSL) editors. The tool provides a
platform for building rich DSL editors working on EMF models.

METAclipse editors are driven by model transformations that are executed on
every user action in the editor (even a mouse click on some model element invokes a
transformation). This and the fact that models being edited with the DSL editors tend
to become fairly large (even millions of instances) creates very high efficiency
requirements to the transformation engine. For transformations to work efficiently, it
is important to have an appropriate repository. EMF itself lacks the functionality
required for efficient implementation of operations like pattern matching. Therefore,
for an efficient transformation engine implementation, it is required to extend the
EMF to add the missing functionality.

In a similar situation, Tiger project [24] team has chosen to redesign their graph
transformation language AGG [25] and transfer it to EMF. In case of METAclipse,
we already had an efficient repository MIIREP [8], specialized for transformation
languages and capable of handling huge models, and a stable and efficient
transformation language MOLA [10, 11], working on this repository. It was more
natural to integrate the named repository into EMF rather than redesign the MOLA
language to work in the EMF environment and extend the functionality of EMF.

Another example, similar to the case of METAclipse, would be integration of the
external simulation engine functionality (such as available in GME framework) into
EMF. For example, if we use the graphical plugins of Eclipse for visualization and
animation and external libraries for computation, there is a need of rapid model data
interchange between the EMF and the external model storage.

We see that another applicability domain where our solution would be useful is for
augmentation of the possibilities of the existing tools with the features provided by
the EMF technology family. Papers [17], [19] and [20] demonstrate that there is a real
need for such integration. Mentioned papers use the import / export approach with
transformations involved in metamodel mapping from one technical space to other.
This approach was natural for the problems addressed, as all three are examples of
typical batch transfers of model data.

Things, however, get more complicated if there is a need to transfer only a part of
the model and to merge the changes back. For example, if a MDSD transformation is
applied to a sub-model, the results must be integrated in the common design model of
a system. In this case some non-trivial reasoning is required in order to preserve the

integrity of the complete model. The approach described in this paper could be
adapted to solve the problems of this use-case, and it seems to be the only reasonable
solution. The only concern that has to be considered and affects the effort needed for
implementation is the support of change tracking in the external repository.

It must be noted that the applicability of the proposed solution is constrained with
the need for the external repository API to provide functionality that would cover all
the capabilities of the EMOF. If the concepts behind the repository are not compatible
with EMOF (meta-meta-models at M3 layer are not close enough), it is not possible to
apply the presented approach. Also, there is no real need of using the introduced
solution if there is no use for the runtime dynamic synchronization and lazy model
handling, and all that is needed are some batch updates. In such cases it will probably
be easier to implement the import / export features.

6 Conclusions

This paper proposes an alternative to the traditional (import / export-based) approach
to external model repository integration in the EMF environment. The approach
presented here integrates the external repositories directly, providing runtime model
synchronization between EMF and repository model data. The discussed
implementation extends the basic functionality of EMF objects by applying the proxy
design pattern to carry out the synchronization tasks “behind the scenes”. The EMF
interface is not changed, so that application logic does not have to be modified
whenever it is needed to attach an external repository. The solution also limits the
memory footprint of the loaded models through the use of lazy-loading.

The integration approach introduced in this paper can be applied only to model
repositories that satisfy two basic requirements: their metamodels must be close to
EMOF, and they must provide API capabilities similar to EMF. The paper does not
provide an absolutely universal implementation that could fit all repositories. Because
of the differences in the APIs of various repositories and variations in their
capabilities, the presented approach has to be adjusted slightly differently for each of
them. However, most of the implementation (a detailed description of which is given
in sections 4.1 and 4.2) can be reused and does not have to change.

The typical application of the proposed solution would be for integration scenarios
where it would be necessary to interchange data between the repository and EMF
frequently and rapidly. The approach has been applied in practice to the metamodel-
based transformation-driven modeling tool building platform METAclipse. In this
platform, a highly efficient model repository that is specialized for the transformation
language purposes is integrated with EMF. This provides the possibility to execute
MOLA language transformations on the models visualized by EMF-technology-based
tools.

There also exist other application possibilities for our approach. One such
possibility could be MDSD transformation support in a more complicated
environment, briefly sketched in section 5. This section also elaborates more on other
possibilities of the applications.

References

1. OMG, Model Driven Architecture, http://www.omg.org/mda/
2. Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
3. OMG, Meta-Object Facility (MOF), http://www.omg.org/mof/
4. Model Development Tools (MDT) Project, http://www.eclipse.org/modeling/mdt/
5. Atlas Transformation Language (ATL) Project, http://www.eclipse.org/m2m/atl/
6. Graphical Modeling Framework (GMF) Project, http://www.eclipse.org/gmf/
7. Eclipse Modeling Framework Technology Project, http://www.eclipse.org/modeling/emft/
8. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,

Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius, Lithuania,
O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp. 203–218.

9. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building Tools
by Model Transformations in Eclipse. Proceedings of DSM’07 workshop of OOPSLA
2007, Montreal, Canada, Jyväskylä University Printing House, 2007, pp. 194–207.

10. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.

11. UL IMCS, MOLA pages, http://mola.mii.lu.lv/
12. Metadata Repository (MDR), http://mdr.netbeans.org/
13. S. Cook, G. Jones, S. Kent and A. C. Wills. Domain-Specific Development with Visual

Studio DSL Tools. Addison-Wesley, 2007.
14. Karsai G.: A Configurable Visual Programming Environment: A Tool for Domain-

Specific Programming, IEEE Computer Society Press, pp. 36-44, 1995.
15. Fujaba. Universitat Paderborn, Institut fur Informatik

http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/
FujabaDoc.pdf

16. The Generic Eclipse Modeling System GEMS, http://www.eclipse.org/gmt/gems/
17. Tool Integration within Software Engineering Environments: An Annotated Bibliography,

http://www.macs.hw.ac.uk:8080/techreps/build_table.jsp?id=0041
18. Kern, H., Kühne, S.: Model Interchange between ARIS and Eclipse EMF. Proceedings of

DSM’07 workshop of OOPSLA 2007, Montreal, Canada, Jyväskylä University Printing
House, 2007.

19. Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.: Bridging the MS/DSL Tools
and the Eclipse Modeling Framework. Proceedings of the International Workshop on
Software Factories at OOPSLA 2005, San Diego, California, USA, 2005.

20. Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., Kurtev, I.: Bridging the Generic
Modeling Environment (GME) and the Eclipse Modeling Framework (EMF). Proceedings
of the Best Practices for Model Driven Software Development at OOPSLA'05, San Diego,
California, USA, 2005.

21. Biermann, E., Ehrig, K., Koehler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. Proceedings
of MoDELS’06, Genova, Italy, October 2006.

22. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Boston, MA, 1995.

23. Vilitis, O., Kalnins, A.: Technical Solutions for the Transformation-Driven Graphical Tool
Building Platform METAclipse. Computer Science and Information Technologies, Acta
Universitatis Latviensis, 2008.

24. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design of
Visual Languages using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12.

25. Taentzer, G: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. AGTIVE’03, Vol. 3062, Springer LNCS, 2004.

