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Abstract. Eclipse Modeling Framework (EMF) has become a very popular 
environment for the implementation of a structured model, which has resulted 
in increased need for integration with other modeling environments. In this 
paper, we describe a method for direct integration of external model 
repositories in the EMF infrastructure. Our approach is based on the application 
of the proxy pattern to extend the functionality of EMF base objects and to 
provide a runtime synchronization of the model data with the repository. 
The approach presented here allows existing applications to interchange model 
data seamlessly with EMF, thus giving access to the services offered by EMF 
technologies. On the other hand, EMF-based applications can benefit from the 
services provided by external repositories and applications (for example, 
efficient model-to-model transformation implementation) without the need to 
adjust the application code. Applicability of the solution introduced is analyzed 
at the end of the paper. The approach has been successfully applied in the 
metamodel-based tool building platform METAclipse. 
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1 Introduction 

Model-Driven Architecture (MDA) [1] concepts have been around for quite a while 
now and currently many software platforms, frameworks, tools, and applications work 
with models and model repositories. Various tools and frameworks provide a wide 
range of services for operation with models: transformation languages (both model-
to-model and model-to-text), model querying and validation facilities, different 
persistence solutions, code generation, etc. 

1.1 Features of the EMF Family Technologies 

One of the most popular modeling frameworks currently is Eclipse Modeling 
Framework [2] (EMF). Having started as a MOF [3] implementation, EMF has gone 
its own way and relies on its own metamodel ECore, which is very similar to EMOF 
(Essential MOF), a subset of the MOF. In fact, there are just some small, mostly 
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notational, differences between those two. By bringing an efficient implementation of 
the core subset of the MOF API to the developers, EMF has quickly become a de-
facto standard of model handling in Eclipse-based tools, and is also becoming popular 
outside Eclipse in standalone applications. 

EMF is widely used as a tool for the implementation of a structured model. 
However, this is not the only functionality the family of EMF technologies has to 
offer. By introducing an efficient and standardized approach to model handling, EMF 
has promoted the evolution of various EMF-based projects supporting the model-
driven engineering process (such as EMF Query [2], EMF Transaction [2], OCL 
implementation [4], validation component [2], and various transformation language 
implementations, e.g., ATLAS Transformation Language ATL [5] for model-to-
model transformations and JET for model-to-text transformations). 

Other Eclipse frameworks and tools are built to operate on EMF models, allowing 
rich graphical editing of the models (like GMF [6]). There are a number of practical 
Eclipse applications built that even further extend EMF model handling possibilities 
and applicability of EMF models. Among those are various persistency and O/R 
mapping solutions (such as CDO and Teneo [7]), the MDSD supporting framework 
openArchitectureWare, and even commercial development and design tools like IBM 
Rational Software Architect, etc. The stack of technologies in the EMF family and the 
supply of tools operating on EMF models are growing continuously. 

1.2 Motivation for the External Repository Integration in EMF 

Having such a rich set of services available, EMF is an appealing environment for 
model handling. Existing applications can benefit from allowing their models to be 
transferred to EMF and back. For example, such interoperability could add missing 
features to existing model environments when needed, enabling XMI model 
serialization (provided by EMF as the default serialization mechanism), validation of 
the model against a defined rule set, code generation functionality or model-to-model 
transformations, the possibility to develop graphical model editors, etc. 

Not only existing applications can benefit from integration with EMF. Another 
benefit of the external repository integration in EMF is the possibility to use 
additional services from EMF-based tools. In fact, this was the main reason why EMF 
proxy classes were developed at the Institute of Mathematics and Computer Science 
at the University of Latvia. We integrated our own model repository MIIREP [8] with 
EMF, so that our EMF-based tool METAclipse [9] (metamodel- and transformation-
based graphical DSL-editor building platform) could gain access to our model-to-
model transformation engine and use our transformation language MOLA [10, 11]. 
These transformations are compiled to C++ code and work on the MIIREP repository, 
which is specialized particularly for efficient execution of the operations needed by 
transformations. By this integration we gained the performance needed for 
transformations to work on huge models in a very efficient way.  

The alternative to integration would have been transferring the MOLA 
transformation language to Java, so that it worked on EMF objects directly. This, 
however, would have meant massive work on a new implementation of MOLA and 
would have required much more effort. Furthermore, the transfer of MOLA itself 
would not have guaranteed the possibility to measure up with the efficiency of C++ 



implementation. Also, it would not have been sufficient to have only model import / 
export functionality, as in the case of METAclipse interaction with the repository is 
very dynamic. Each instance of user interaction with METAclipse results in the 
execution of some transformation, so a very rapid access and change of repository 
objects is required from both the Eclipse editor and the MOLA transformations. 
Therefore, integration of the existing repository was the most reasonable choice. 

Another motivation for integration worth mentioning is the possibility to unite the 
EMF with different other model-handling frameworks, such as MDR [12], MS DSL 
[13], Generic Modeling Environment [14], and Fujaba [15]. All these frameworks are 
meta-model-based, and their meta-meta-models provide similar capabilities to EMOF. 
They all can handle models similar to EMF, and each provides distinctive features for 
model handling. For example, GME provides advanced facilities for building model-
based simulators and debuggers, while MS DSL provides easy integration with 
Microsoft technologies. The features of each framework can turn out to be useful for 
EMF models. There are therefore good reasons for uniting them. There already exists 
such an attempt: Eclipse project GEMS [16] binds the GME to EMF. 

1.3 Integration Solutions 

In general, tool integration problem has been a topic of discussions and publications 
already for a long time. A survey [17] shows that the tool integration topic is very 
wide. Most of the covered papers discuss the integration problem generically. This 
paper, however, concentrates on the integration solution for a specific technology, 
namely EMF, fulfilling more stringent requirements than in the general case. 

There already are some examples of model interchange between EMF and other 
technologies, based on the import and export of models. In the simplest cases it is 
done through some format supported by both EMF and the external repository (such 
as XMI), but others make use of the native repository APIs. Some of these are the 
integration of EMF with ARIS [18], MS/DSL [19] tools, GME [20], and EMT [21]. 

There is one significant problem with the import / export approach. In this process, 
the model is first exported, resulting in a copy of the model. Then changes to the copy 
are made, after which the modified copy is imported back in the model. If the whole 
model is transferred, this process is not complicated. However, usually models are big 
and it is inefficient to transfer them in their entirety. Normally, only a sub-set of the 
entire model needs to be exported for external modification. In this case, a huge 
problem is the merging of the transformed sub-model back into the original model. 
The main problem is that there can be references from the unmodified parts of the 
model to some parts of the model that have been deleted or changed. These references 
need to be traced and modified; sometimes perhaps redirected to newly created 
elements. This is not an easy task and requires knowledge of both the original and the 
modified models, and sometimes even about model transformation logic. 

Another characteristic of the import / export approach is that it can support the 
integration needs only if the model transfer from one technical space to another is 
relatively infrequent (for the batch processing of the models). If more rapid model 
data interchange is needed, other integration solutions should be considered. 

In this paper we describe another approach to model data transfer, namely, direct 
integration of the external repositories with the EMF environment. In addition to the 



features provided by import / export and bridging of the technical spaces, the 
approach presented here allows lazy data loading and synchronization (only the 
relevant data will get transferred to and from EMF) and dynamic model integration in 
EMF (operations on external models can be carried out at runtime). The solution also 
does not create any problems with merging, as modifications of the model are carried 
out directly in the original model, and no export, import and merging are needed. 

The main idea behind our approach is to alter the original implementations of the 
core EMF objects in such a way that they start acting as proxies to the external 
repository, and each operation on the EMF model is redirected to the corresponding 
operation(s) on the external repository. Any changes done to the model at the runtime 
outside the EMF are properly notified to listeners through the EMF notification API. 
More detailed description of our solution is presented in section 4. 

Summing up, the presented integration approach allows existing applications to 
gain the benefits of the services offered by the EMF tools and vice versa. For 
example, in the context of transformation languages, applications not offering 
transformation languages can use the transformation languages operating on EMF 
models. On the other hand, EMF tools can use the transformation languages offered 
by external applications in order to gain efficiency and improve performance. 

In further sections of this paper we will describe the proxy approach to repository 
integration in more detail. Section 2 will introduce the objectives of the integration 
approach proposed. Section 3 will demonstrate how the Proxy pattern can be applied 
in order to achieve the integration goals. In section 4 we will give more details on 
integration implementation and in section 5 we will present some exemplary 
applications of the offered integration approach. 

2 Objectives of the Integration 

The goal of our proposed repository integration solution is to provide a bridge 
between the external repository and EMF that would possess the same characteristics 
as import / export solutions (possibility to transfer the model data from the external 
repository to EMF and back), but at the same time would provide more sophisticated 
features, such as the ability to carry out the transfer of model data dynamically, as the 
models are changing during the runtime. Here we focus only on cases, where the 
meta-metamodel (M3) concepts of the application can be easily mapped to the meta-
metamodel of EMF, namely ECore (otherwise, non-trivial model transformations 
would be required). 

There has to be a possibility to synchronize models between the external repository 
and EMF, propagating changes made on either side to the other in real time. It must 
be possible to carry out synchronization in both directions. If the change is made to 
the synchronized model directly in the external repository by some external 
application, it must be transferred to the EMF and proper EMF notifications have to 
be called. And vice versa, if the change is made to the model by EMF, it must be 
transferred also to the external repository. 

That being said, it must be noted that currently no objective has been established to 
allow simultaneous changing of models by external applications and by EMF – the 



presented solution presumes that if there are changes on both sides, they are always 
sequential rather than parallel, and no concurrency is supported. 

Another aspect to be considered is that we do not want to impose any additional 
requirements to the applications using the EMF code. This means that the EMF 
interface has to remain intact and applications already using the EMF classes should 
not have to change significantly if it was required for them to synchronize their model 
data with an external repository. 

3 Applying the Proxy Pattern 

Taking into account the aforementioned goals, an appropriate method for the 
implementation of external repository integration with EMF is the proxy pattern. The 
basic idea of this pattern is to provide a façade for another object in order to control 
the access to it. As Design Patterns book [22] suggests, some of the most typical cases 
when the proxy pattern is used are when: 
1. it is necessary to provide a local representation of a remote object (remote proxy); 
2. objects are expensive to create and should be created on-demand (virtual proxy). 

Relating this to our goals, we want the EMF to act as a façade to the external 
repository and delegate the calls to the external repository API. To be more specific, 
what we need is a remote proxy with the features of the virtual proxy. The utilization 
of the remote proxy is obvious. The virtual proxy features are needed, because models 
tend to be very big, making it desirable to transfer to EMF only those objects that are 
really needed. Additionally, for increased performance, the caching mechanism needs 
to be implemented so that subsequent access to the object properties would result just 
in a single call to the repository API functions. See Fig. 1 for the class diagram of the 
proxy pattern adjusted to our needs. 

 
Fig. 1. Structure of the proxy pattern  

applied for the bridging of EMF and the external repository 

The figure depicts only high-level structural elements. The client is any application 
using proxied EMF objects. It is accessing the EMF object interfaces (only the root 
interface EObject is displayed with basic representative methods eGet and eSet, but it 
could be any sub-interface of EObject in ECore metamodel or any generated EMF 
class interface). As EMF has a top-level object defined in its metamodel, namely 



EObject, it is enough to provide the proxy implementation for this object to get the 
proxy functionality spread throughout all EMF metamodel implementation classes. 

Extension EObjectProxy of the EMF EObject interface implementation 
EObjectImpl acts as a proxy to the external repository API. This class implements the 
“remote” and “virtual” features of the proxy pattern by delegating the calls to the API 
of the external repository and providing a cachedData map that is consulted before 
calling the actual repository API functions. 

ExternalRepositoryAPI class is the one being proxied. The difference between the 
variation shown in Fig. 1 and the original proxy pattern is that the external repository 
API does not implement the same interface as the proxy. It is possible that some calls 
to the EObject will result in multiple calls to ExternalRepositoryAPI, possibly even 
with some model transformation involved. However, external repository API cannot 
be absolutely arbitrary. It must operate with the same concepts as EMF, i.e. its 
capabilities must be isomorphous to EMOF. Therefore, it can be said that it 
“isomorphically” still implements the same interface as proxy. 

By applying the proxy pattern we can solve the synchronization problem in one 
direction—from EMF to the repository. However, changes done in the external 
repository by external applications must be transferred back to the EMF, as both sides 
can actively change the models. For this reason, an additional change notification 
mechanism is needed. Such mechanism will be described in the next section 
(subsection 4.2) together with technical details of application of the proxy pattern. 

4 Implementation of the Proxy for EMF: “Wise” Objects 

Having established how to apply the proxy pattern, we can proceed to the technical 
details of the actual implementation of the proxy to the external repository. We will 
be giving the description based on the experience we had while integrating our 
repository MIIREP [8] with our EMF-based graphical model editing tool 
METAclipse [9], where the proxy approach to integration is already successfully 
implemented and working (see section 5 for more information about METAclipse). 
The actual implementation of the EMF proxy will differ from repository to repository, 
as there will be differences in repository APIs. Still the concepts of the integration 
will remain the same. Technical description of METAclipse, including some specific 
details about MIIREP and EMF integration is given in [23]. 

In case of integration of MIIREP in EMF, changes to the model can occur as a 
result of both model transformations working directly with the repository API and the 
METAclipse tool working with the EMF representation of the model. Therefore, both 
kinds of synchronization are involved—from the repository to EMF and vice versa. 

4.1  “Wise” Objects as an EMF Extension 

EMF ECore metamodel classes (ECore base classes) define the class hierarchy that 
forms the basis for the Java runtime. All EMF runtime classes generated for a 
particular metamodel extend these base classes. ECore base classes provide all the 
functionality to the generated classes and allow using them in EMF infrastructure by 
providing all the EMF framework features. Consequently, base classes are the best 



place where repository synchronization should be implemented and, as it has already 
been roughly sketched in section 3, EMF proxies are implemented as an extension of 
the original EMF ECore objects, providing an alternative EMF runtime.  

New proxy objects conform to EMF interfaces and externally look like normal 
EMF objects, but internally do all the synchronization with the repository. These 
objects were named “wise” objects, as they show certain “intelligence”: though from 
the interface perspective they look like normal EMF objects and support all EMF 
framework operations, internally they know when and how it is necessary to read or 
write information to the repository. For EMF tools “wise” objects can be considered a 
second level of repository abstraction, which introduces the caching mechanism, 
conforms to the EMF object interfaces and uses first level abstraction—repository 
interface—to read and write data to the repository. 

Base ECore classes were extended and a set of “wise” object base classes was 
defined (see Fig. 2). By analogy to ECore classes, base “wise” object classes, together 
with some helper classes comprising the whole “wise” object concept, were called 
WCore. In WCore, the methods inherited from ECore for accessing the properties are 
extended with functionality of reading and writing data from and to the repository. 
For increased performance, “wise” objects keep track of the state of every object 
property and cache the data from the repository in the object instance, so that 
subsequent reads of the same property would require just a single repository access. 

The fact that the parent of all ECore classes is a single class—EObject (see [2] for 
complete ECore structure)—simplified the extension of ECore. For “wise” object 
needs it was enough to extend just two ECore classes, EObject and EFactory, with the 
corresponding WObject and WFactory classes. WObject contains all the caching and 
synchronization logic and, as it is the superclass of all the other framework classes, 
the logic is available all across the framework. The WFactory extension of the factory 
class is needed, as some initialization of the “wise” object on its creation is required. 

 
Fig. 2. “Wise” object dependencies 

To put the WCore classes in action also for the generated code, the EMF generator 
had to be extended so that it produced “wise” objects extending WCore base classes. 
The EMF framework uses so-called dynamic code templates during the generation 
process of the runtime classes. The EMF generator reads the serialized form of the 



metamodel and then, using the set of templates, generates the runtime classes (see 
Fig. 2). Default templates producing EMF runtime classes were extended so that they 
would generate the code using WCore instead of ECore. 

The complete set of classes comprising the WCore can be seen in Fig. 3. The 
above-mentioned extension of getter and setter methods of ECore is divided into two 
classes. Reading of the attributes from the repository was easiest to implement in the 
WObjectImpl class itself, in the inherited getter methods. Writing the attributes, 
however, was easier to move to a separate class WObjectChangeObserver, which 
implements the EMF change listener and is attached to every instance of WObject. 
The change observer listens to any changes done to the WObject from the EMF side 
and whenever one occurs, writes the data to the repository. 

 
Fig. 3. WCore class diagram 

To be able to read and write the repository data, “wise” objects need to have a 
possibility to map the classes, attributes and associations to the corresponding 
repository objects. Such mapping can be defined only at the M2 layer and thus it is 
needed to have the WCore class and feature mapping to the repository metadata at the 
M2 layer. As it is inefficient to read these mappings every time an object is accessed, 
class metadata mappings are cached. The WRepositoryMetadata object represents the 
class metadata. The map of WCore class to repository metadata mappings is held in 
the WRepositoryController object. 

The two objects directly responsible for the synchronization of the model in the 
repository and in its representation in EMF (WObject and WObjectChangeObserver) 
act on the events of reading or changing the model information through the EMF API. 
When any operation on the model is performed, it translates the EMF API call to the 
corresponding call(s) to the repository API. It is easy to do this if the repository relies 
on a metamodel that is very close to the EMOF. However, the less the repository API 
resembles EMOF, the harder it becomes to map the EMF calls to it and the more 
intelligent transformations are necessary. 



4.2 Repository Change Notification 

Extending the ECore base classes covers the synchronization needs only from the 
EMF perspective, i.e., this part of the solution is applicable only when changes to the 
model are made from the environment working with EMF classes (wise objects). 
However, model changes can happen also on the other side (in the case of the 
MIIREP integration in METAclipse, the most intense changes to the model are made 
by the transformations in the repository directly). So, besides the proxy pattern 
applied to EMF objects, another missing piece is change notification back from the 
repository, which would trigger the EMF change events for all objects that have been 
changed. 

The change notification is not a trivial task, as it is also constrained with tight 
performance requirements. It is very inefficient to detect the changes when they have 
already been made, as it requires inspection of all object instances in the repository. 
This means that support from the side of the repository or the tool performing the 
changes is required in order to implement efficient change notification. 

In WCore, the WRepositoryController class (see Fig. 3) takes care of the repository 
model change tracking. There, a special method is defined for change detection, 
which has to be invoked after each change made to the model directly at the 
repository (what is calling this method depends on how the integration of the external 
repository is used). The implementation of the WRepositoryController, however, is 
strongly dependent on the possibilities offered by the repository being integrated. 

For each repository the change tracking mechanism is different, as the possibilities 
of detecting changes differ from one to another. The worst case is if the external 
change source is making unpredictable changes in the repository and the repository 
itself does not provide any change tracking mechanism. In this case there are only two 
options: introduce a layer between the external tool and the repository that will 
implement the change tracking mechanism or, if the performance requirements allow 
it, do a full re-scan of all model elements residing in the repository and detect which 
elements and how have been changed. One possibility for the implementation of the 
change-tracking layer is to use aspect-oriented programming (AOP) in order to 
execute the change tracking code before or after repository API function calls. 

A slightly better situation occurs when some kind of an algorithm exists that limits 
the number of the model elements to consider while detecting the changes. The best 
scenario, however, is when it is possible to rely on a repository-native service that 
allows explicit detection or monitoring of the changes by either defining the listeners 
on the repository objects or calling some method that returns the set of the changes. 

To support the various scenarios of how the change detection can happen, 
WRepositoryController defines an abstract change notification method returning lists 
of the changed or deleted objects. Functionality of tracking changes is left to the 
implementations for individual repositories. When changed or deleted object lists are 
read from the repository, WRepositoryController issues the corresponding EMF 
notifications and the modified features of the object instances that have changed are 
tagged “dirty,” so that they are once again read from the repository when accessed 
instead of using the cached values from the WObject instances. 

In case of the repository and transformations currently used in METAclipse, it was 
very easy to track object deletions, as the MIIREP repository itself has the 



functionality to track such changes. However, the tracking of the changes to the 
existing objects had to be incorporated in the transformations. Each transformation is 
responsible for maintaining the lists of the changes to be returned to the 
WRepositoryController. 

5 Applicability  

As already mentioned, the main force that drove the development of the approach 
presented was the necessity for the use of an external repository in the METAclipse 
tool. This demonstrates a case when the discussed integration approach is applied to 
make extra features provided by an external repository available in EMF. 
METAclipse, presented in [9], is a metamodel-based graphical tool building platform 
for the development of domain-specific language (DSL) editors. The tool provides a 
platform for building rich DSL editors working on EMF models. 

METAclipse editors are driven by model transformations that are executed on 
every user action in the editor (even a mouse click on some model element invokes a 
transformation). This and the fact that models being edited with the DSL editors tend 
to become fairly large (even millions of instances) creates very high efficiency 
requirements to the transformation engine. For transformations to work efficiently, it 
is important to have an appropriate repository. EMF itself lacks the functionality 
required for efficient implementation of operations like pattern matching. Therefore, 
for an efficient transformation engine implementation, it is required to extend the 
EMF to add the missing functionality. 

In a similar situation, Tiger project [24] team has chosen to redesign their graph 
transformation language AGG [25] and transfer it to EMF. In case of METAclipse, 
we already had an efficient repository MIIREP [8], specialized for transformation 
languages and capable of handling huge models, and a stable and efficient 
transformation language MOLA [10, 11], working on this repository. It was more 
natural to integrate the named repository into EMF rather than redesign the MOLA 
language to work in the EMF environment and extend the functionality of EMF. 

Another example, similar to the case of METAclipse, would be integration of the 
external simulation engine functionality (such as available in GME framework) into 
EMF. For example, if we use the graphical plugins of Eclipse for visualization and 
animation and external libraries for computation, there is a need of rapid model data 
interchange between the EMF and the external model storage. 

We see that another applicability domain where our solution would be useful is for 
augmentation of the possibilities of the existing tools with the features provided by 
the EMF technology family. Papers [17], [19] and [20] demonstrate that there is a real 
need for such integration. Mentioned papers use the import / export approach with 
transformations involved in metamodel mapping from one technical space to other. 
This approach was natural for the problems addressed, as all three are examples of 
typical batch transfers of model data. 

Things, however, get more complicated if there is a need to transfer only a part of 
the model and to merge the changes back. For example, if a MDSD transformation is 
applied to a sub-model, the results must be integrated in the common design model of 
a system. In this case some non-trivial reasoning is required in order to preserve the 



integrity of the complete model. The approach described in this paper could be 
adapted to solve the problems of this use-case, and it seems to be the only reasonable 
solution. The only concern that has to be considered and affects the effort needed for 
implementation is the support of change tracking in the external repository. 

It must be noted that the applicability of the proposed solution is constrained with 
the need for the external repository API to provide functionality that would cover all 
the capabilities of the EMOF. If the concepts behind the repository are not compatible 
with EMOF (meta-meta-models at M3 layer are not close enough), it is not possible to 
apply the presented approach. Also, there is no real need of using the introduced 
solution if there is no use for the runtime dynamic synchronization and lazy model 
handling, and all that is needed are some batch updates. In such cases it will probably 
be easier to implement the import / export features. 

6 Conclusions 

This paper proposes an alternative to the traditional (import / export-based) approach 
to external model repository integration in the EMF environment. The approach 
presented here integrates the external repositories directly, providing runtime model 
synchronization between EMF and repository model data. The discussed 
implementation extends the basic functionality of EMF objects by applying the proxy 
design pattern to carry out the synchronization tasks “behind the scenes”. The EMF 
interface is not changed, so that application logic does not have to be modified 
whenever it is needed to attach an external repository. The solution also limits the 
memory footprint of the loaded models through the use of lazy-loading. 

The integration approach introduced in this paper can be applied only to model 
repositories that satisfy two basic requirements: their metamodels must be close to 
EMOF, and they must provide API capabilities similar to EMF. The paper does not 
provide an absolutely universal implementation that could fit all repositories. Because 
of the differences in the APIs of various repositories and variations in their 
capabilities, the presented approach has to be adjusted slightly differently for each of 
them. However, most of the implementation (a detailed description of which is given 
in sections 4.1 and 4.2) can be reused and does not have to change. 

The typical application of the proposed solution would be for integration scenarios 
where it would be necessary to interchange data between the repository and EMF 
frequently and rapidly. The approach has been applied in practice to the metamodel-
based transformation-driven modeling tool building platform METAclipse. In this 
platform, a highly efficient model repository that is specialized for the transformation 
language purposes is integrated with EMF. This provides the possibility to execute 
MOLA language transformations on the models visualized by EMF-technology-based 
tools. 

There also exist other application possibilities for our approach. One such 
possibility could be MDSD transformation support in a more complicated 
environment, briefly sketched in section 5. This section also elaborates more on other 
possibilities of the applications. 
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