

 HOW TO COMPREHEND LARGE AND
COMPLICATED SYSTEMS

Janis Barzdins, Audris Kalnins*

1. INTRODUCTION

The basic problem at early analysis stage of the development life cycle is how to

quickly comprehend a large and complicated system. One of the ways to comprehend
such a system is to build an object model, as it was suggested by the pioneers of object
modelling approach such as J.Rumbaugh1 and J.Martin2. In up-to-date terminology it
means building a UML class diagram. The authors have got convinced in their everyday
practice on extreme efficiency of this type of modelling, though at the same time a sig-
nificant experience for this job is also required. To make this job easier, a modelling
methodology must be developed. The goal of this paper is, on the one hand, to give some
methodological recommendations in the conceptual modelling by means of class dia-
grams, and on the other hand, to discuss requirements for tools which support this type of
modelling.

As it is widely known, class diagrams may be used for various purposes. The most
popular usage is for object-oriented software design. A lot of books has been devoted to
this area,3-10 and this type of usage is fully supported by such well-known tools as Ra-
tional Rose and TogetherJ. The area of building class diagrams for comprehension of
complicated systems, started by J.Rumbaugh1 and J.Martin2 in the beginning of nineties,
in recent years has got significantly less publicity. No widely known methodology here is
available, even the books6-8

covering complete UML-based development life-cycle pay
little attention to this area. Most of popular tools support that type of modelling to a sig-
nificantly lesser degree. One of the tools which is mainly oriented towards conceptual
modelling by means of class diagrams is GRADE,11 in the development of which the au-
thors of this paper have taken part. The GRADE tool has a well developed stereotype
mechanism and a number of other facilities which are essential for conceptual modelling
support.

To avoid any misunderstanding, in this paper by term “conceptual modelling” we
understand the above mentioned type of modelling, which is required for understanding a
system during the early analysis phase.

* Institute of Mathematics and Computer Science, University of Latvia Raina bulv. 29, LV-1459, Riga, Latvia

1

2 J.BARZDINS, A.KALNINS

2. BRIEF NOTES ON SEMANTICS OF CLASS DIAGRAMS

The semantics of class diagrams when applied to software design is quite clear and

well documented in UML approach.2 But the semantics for conceptual modelling is much
more vague and intuitive. At the same time this semantics must be understandable for a
very broad class of users, because conceptual models frequently must be read unambigu-
ously by non-IT specialists. In this paper we follow the Object Role Modelling (ORM)12
approach and use natural language sentences as the basis for defining the semantics of
class diagrams. We will consider only such class diagrams where the associations present
in them express unambiguously readable sentences in a natural language. Consequently,
the semantics of a class diagram is defined as a set of natural language sentences which
are derivable from the associations of this diagram. We call this semantics the linguistic
semantics. Let us explain the approach by an example (Fig. 1).

TownFactoryPerson works at is located in

Figure 1. Simple example

This class diagram corresponds to two simple sentences:

Person works at factory. Factory is located in town.
To enable an unambiguous derivation of sentences from a class diagram, we use one

agreement proposed by J.Martin.2 Namely, the class corresponding to the subject of the
sentence we place on the left-hand side, the association name (placed above the associa-
tion line) is used as the predicate, and the object class is placed on the right-hand side.
When an association line is rotated in a class diagram, it should be mentally rotated back
to the “normal position”, so that the name is again above the line. Let us remind that in
UML standard the association name direction is marked by a black triangle symbol, but
the most popular UML tool Rational Rose doesn’t support this mark-up.

3. HOW TO DESCRIBE ACTIVITIES BY CLASS DIAGRAMS

Traditionally, in conceptual modelling class diagrams are used to describe the static
structure of a system. Namely this aspect has been thoroughly discussed in early works
on object oriented modelling by J.Rumbough1 and J.Martin,2 as well as in some recent
UML-based publications.3, 5-7, 10 However, our experience shows that at the conceptual
modelling stage class diagrams should cover much broader range of aspects. One of these
important aspects is a generalised description of system activities.13 Now let us cover this
aspect in more detail.

OrderCustomer places

Figure 2. Simple activity

HOW TO COMPREHEND LARGE AND COMPLICATED SYSTEMS 3

From the linguistic point of view an activity is a sentence describing an action, e.g.,

Customer places order (see Fig.2). This example of an activity is extremely simple. In
real life activities are much more complicated and frequently can not be described by
binary associations in an adequate manner.

Let us consider one more example:
Person submits application to office.

This activity evidently corresponds to a ternary association (Fig. 3).

submit Application

Office

Person

Fig. 3. Example of ternary association

In order to have a consistent linguistic semantics definition, a standard representation
scheme must be defined for such a ternary association so that the sentence can be unam-
biguously restored from the association. ORM 12 proposes one way how to do this (see
Fig.4).

Person

...submits ... to...
Office

Application

Fig.4. ORM representation of a ternary association

By rephrasing this ORM notation into UML class diagram notation we obtain the
form visible in Fig.5.

...submits...to... Office

Application

Person

Fig.5 ORM-style representation in UML

The ellipses … in the sentence template show holes where the corresponding class
names must be inserted to obtain a valid sentence in the natural language. This approach
works perfectly for small class diagrams where classes can be positioned in accordance
with the sequence of ellipses. Therefore the repositioned diagram visible in Fig.6 cannot
be considered to be easy readable, though formally the corresponding natural language
sentence can be restored easily. However in this particular case the problem can be
amended by changing the sentence to Application is submitted to office by person.

4 J.BARZDINS, A.KALNINS

Application Office Person...submits...to...

Fig.6 Repositioned representation

Another way how to deal with n-ary associations is by means of role names. How-
ever the selection of appropriate role names is not easy, there exists a lot of research in
the area of ontologies where this issue is discussed. A role name classification appropri-
ate for our goals is given by J.Sowa in his book on knowledge representation.14 This
classification is based on Aristotle's four causes or aitia, as described in the Metaphysics:
Initiator, Resource, Goal, Essence .

Table 1. Role name classification proposed by J.Sowa

 Initiator Resource Goal Essence

Action Agent, Instrument Result,
Recipient

Patient,

Process Agent,
Origin Matter Result,

Recipient
Patient,

Transfer Agent,
Origin

Instrument,
Medium

Experiencer,
Recipient Theme

Spatial Origin Path Destination Location

Temporal Start Duration Completion PointInTime

Ambient Origin Instrument,
Matter Result Theme

Effector Theme

Theme

Table 1 taken from 14 refines these basic roles for various types of activities (the first

column names these types of activities). Most of the roles in Table 1 are self-explanatory,
some comments are necessary on what distinguishes Agent from Effector and Theme
from Patient. The difference is that Agent is a voluntary initiator and Effector is an invol-
untary initiator of an action. Theme is an essential participant that may be moved, said, or
experienced, but which is not structurally changed, but Patient is an essential participant
that undergoes some structural change as a result of the activity.

Office

Person submit ApplicationTheme

Recipient

Agent

Fig.7. Representation using standard role names

HOW TO COMPREHEND LARGE AND COMPLICATED SYSTEMS 5

Using these roles, the previous example Person submits application to office can be
represented as in Fig.7. The usage of roles has one more advantage. By means of roles it
is possible to have a simple description of complicated situations which are hard to de-
scribe in natural language (Fig.8).

Error_
reportProgram tests

Tester

Theme
Result

Agent

Fig.8. Example of a complicated action

Sometimes it is convenient to represent associations describing activities by separate
classes having the stereotype Activity. In this case the usage of standardised role names is
even more important.

Flight_
Coupon

Ticket

Boarding_Pass
Boarding_number

Bag_Tag
Boarding_number

Preparing_of_Boarding
_passes

Baggage_checking_and_
printing_of_Bag_tags

Check-in_agentPassenger Registration
_for_Flight

 1..*

has
 1

Resource
 1..*

Result 1..* Result *

receives
inspects

Agent
 1

Fig. 9. Activity decomposition

One more possibility is demonstrated in the example in Fig. 9, namely, the activity
decomposition. The activity Registration for Flight is shown to be consisting of smaller
activities Preparing of Boarding passes and Baggage checking and printing of Bag tags.
Certainly, the activity decomposition can be represented in any typical business-
modelling formalism such as ARIS eEPC.15 but components of an activity there require a
separate diagram. This is convenient when the decomposition is very complicated, but
not so convenient for simple cases, such as the one in Fig. 9.

Ticket

Flight_Coupon

Validation

Boarding_Pass
Boarding_number

Bag_Tag
Boarding_number

Preparing_of_Boarding_
passes

Baggage_checking_and
_printing_of_Bag_tags

 1..*

Result 1..* Result *

Theme

 1

Fig.10. Control flows

6 J.BARZDINS, A.KALNINS

If a diagram contains several activities, then frequently also the sequence of actions
is of great importance. We propose to represent the sequence by an association with the
stereotype <<Control flow>>, graphically depicted as a dashed arrow. Fig. 10 shows an
example of control flows.

Frequently the flow of activities is branching, depending on various conditions. This
can be represented by attaching guard conditions to control flows. These conditions may
be informal texts or formal expressions, both enclosed in square brackets, but anyway
they must be mutually exclusive. Fig. 11 shows an example of a branching flow.

Assigning_of_
Boarding_number

Rejecting_
passenger

Registering_
late_passenger

TicketValidation

[Flight closed]
[Ticket OK &
Flight open]

[Invalid ticket]
Theme

 1

Fig. 11. Branching

Guard conditions on associations are useful in other cases too - see Fig. 12.

Person Company

A BCar

works_for 0..1

has

[if works for A]
1

Fig. 12. Other case for branching

Class diagram permits also to show the generalisation relation between activities (see
Fig. 13) which is useful, though not present in any business modelling language.

Registration_for_Flight Registration_on_Waiting_List

Registration

Fig. 13. Activity generalization

To sum up, there are several reasons why class diagrams should be used for high
level conceptual modelling of activities. Firstly, from the first glance it is not always clear
which classes really are activities. Secondly, only class diagram permits to depict also the
complete environment of activities – what objects are used, on what they depend, who
performs the activity, etc. And only class diagram permits to show vital associations be-
tween these environment objects. In addition, class diagram permits to represent far more
relations between activities themselves, such as containment and generalisation. So, our

HOW TO COMPREHEND LARGE AND COMPLICATED SYSTEMS 7

conclusion is that high level view on business activities should be represented by class
diagrams, this representation makes them more readable. Specialised business process
diagrams can be used after that step, when the main concepts of a system are already un-
derstood and categorised.

4. NEW PREDEFINED CONSTRAINTS FOR ASSOCIATIONS
UML contains some predefined constraints for associations, such as {ordered},

{xor}, {subset}. From the formal point of view more predefined constraints are not nec-
essary since all imaginable meaningful constraints can be expressed in OCL.16 However
our practical experience shows that there are more frequently used constraints for which
simple graphical shorthands would be of high value. This is confirmed also by the rich set
of predefined constraints in ORM, frequently stated as one of preferences of ORM over
UML. The goal of this chapter is to investigate whether these constraints can be naturally
transferred to UML without “spoiling” the class diagram notation.

Apparently, without any problems in addition to the existing {xor} constraint new
constraints {or} and {x} can be added. The latter one expresses the fact that an instance
of A cannot simultaneously have associations of both types p and r (see Fig.14).

C

A

B

r
 *

{x}

p
 *

Fig.14. X constraint

This proposal has been already mentioned by Halpin,13 where this issue is discussed
in details. The situation with possible generalizations of the {subset} constraint (which
exist in the ORM context) is more complicated. In the result of this analysis we propose
the following constraint (see Fig.15).

A B
r

p

Fig.15. Generalized subset constraint

The meaning of it in the situation of Fig.15 is exactly the same as that of UML {sub-
set}. But this new notation can be easily generalized to more complicated situations (see
Fig.16). This last notation means that if instances a and b of A and B respectively have a
connecting path via C (i.e., there is an appropriate instance of C), then there exists a link
p directly connecting a and b. An equivalent OCL statement expressing the same fact
would look quite clumsy:
A
self.B->includesAll (self.C.B)

8 J.BARZDINS, A.KALNINS

The same notation can be used to express relationships between longer paths. The
necessity for such constraints is frequent in real examples.

C

A

B

s
r

p

Fig.16. A more complicated case of generalized subset

5. EXISTING MODEL STRUCTURING FEATURES AND THEIR USAGE

The main technique for comprehending complicated diagrams (descriptions, models)
is their structuring, i.e., their splitting into more or less independent parts and then refin-
ing these parts by subdiagrams. However the practical experience shows that conceptual
models (class diagrams) for real domains (such as Internet, Web architecture etc) as a rule
cannot be split into independent parts, the whole model is one large “cobweb”. Appar-
ently this is the reason why the structuring of class diagrams in its classical sense has not
been elaborated. For class diagrams a different approach is used, which in a sense com-
pensates the lack of classical structuring. Firstly, there are mechanisms of generalisation
and aggregation, which form the basis for comprehending complicated class diagrams.
Another mechanism for structuring - in a sense a completely new approach to structuring
- is the concept of stereotype (though actually the role of stereotype is much wider in
UML). By defining appropriate stereotypes and assigning easy distinguishable styles
(colours, shapes, icons) to them, we can group semantically close classes in a very read-
able way according to their stereotypes.

It is a function of a good support tool to offer specific symbol styles for each of the
class stereotypes. Actually, by a symbol style here we mean all its graphical style attrib-
utes: shape, icon, background colour, border line style, font styles etc. Similarly, stereo-
types for associations and other lines must support all line style elements: line colour, line
style, end shapes (arrows etc). It should be noted that the official UML recommendations
for graphical stereotype notations (a graphic icon, texture or color) which are typically
implemented in tools are far too limited for good conceptual modeling.

The GRADE tool has such extended stereotype support. For example, it has a prede-
fined stereotype for the activity (represented by a blue rounded rectangle), and there is an
easy facility for defining new stereotypes and assigning styles to them. It should be noted
that the formal facility for structuring of UML models is the package mechanism, but it
is, in a sense, cutting a large model into pieces by scissors, without any care for semantic
independence for fragments (to ascertain, look at the official UML metamodel). The
packages are a perfect tool for structuring software design diagrams which must be struc-
tured by the very nature of design, but are unacceptable for conceptual modelling.

6. NEW STRUCTURING FEATURE – FRAME

As it was noted in the previous section, traditional structuring mechanisms cannot be
used in a proper way for conceptual class diagrams. In this section we offer a principally

HOW TO COMPREHEND LARGE AND COMPLICATED SYSTEMS 9

new structuring feature which we call frame. By frame we understand a rectangle, which
can be positioned onto a semantically related class diagram fragment and given a read-
able name. The figure 17 displays (part of) a conceptual model of Web architecture (built
by J.Rogovs) and frames User, URL, Server, Server software are typical examples of
frames. A class diagram enhanced by properly selected frames becomes much more read-
able and comprehendible.

It is a bit strange that this concept has not been officially included in UML, because
such frames are used in everyday practice when we want to present a readable drawing in
any area. For the goals of conceptual modelling, which is not for formal processing by
computer, but for human understanding, such a little bit fuzzy concept is quite appropri-
ate, if it encourages understanding.

The frame notation becomes especially readable if each frame is assigned a separate
colour. The GRADE modelling tool supports the frame feature (it is called there free
comment symbol).

7. SOME METHODOLOGICAL ADVICES

Rather comprehensive methodological advices on building class diagrams have al-

ready been given by J.Rumbough 1 and we will not repeat them. We will add just some
important items, gained from our practical experience.

1. According to J.Rumbough,1 the building of conceptual class diagram starts with
finding the classes. But a new essential criterion for this is offered - only these concepts
can be selected for classes, where it is absolutely clear, what are their instances, or in
other words, their identity is defined.17 Not always this can be so easy decided. Appar-
ently, water can not be used as a class, but ocean can be. In addition, it should be taken
into account, that classes may be physical objects (car), abstract concepts (car model,
flight) and also activities (testing).

2. When classes are chosen, the saturating of diagram by associations can be started.
Again the basic principle must be adhered to, that only these associations whose seman-
tics is unambiguous should be added.

3. No anomalies should be directly represented in the class diagram, they can be
documented by means of notes (which are official parts of the class diagram).

4. A tool must be used which supports good automatic layouts of class diagrams,
since always during the diagram building new classes and associations must be inserted
inside the fragments already built. This insertion should never “spoil” the used semantic
class positioning principles. If the diagram has 100 or more classes (and real domains are
such), it is impossible to draw this diagram “by hand” or by a tool where each class must
manually positioned.

8. REQUIREMENTS TO TOOLS FOR CONCEPTUAL MODELLING

Several requirements to tools for adequate support of conceptual modelling were out-
lined already in previous sections. In this section we will summarise them and give some
more requirements.

10 J.BARZDINS, A.KALNINS

As it was already mentioned, the most important specific requirement for conceptual
modelling is a good stereotype support. First, there should be a set of predefined class
and association stereotypes corresponding to widely used modelling concepts, with the
most accepted symbol shapes assigned to these stereotypes. For example, activity could
be represented by a blue rounded rectangle. Typical association shapes could be dashed
arrows for an activity sequence, solid arrows for linguistic links etc. On the other hand,
there should be a very convenient facility for introduction of new stereotypes (and their
corresponding shapes) by the tool user. These stereotypes should be available model-
wide, in order to give easily recognisable graphical notations for system-specific concept
groups. For example, the stereotypes could be defined in a model-wide stereotype table.
To our mind, an additional, stereotype feature would also be desirable, namely, there
should be a possibility to attach to a class stereotype a set of predefined attributes. For
example, the stereotype position could have predefined attributes competencies, working
hours, cost per hour, number of instances. The stereotype definition for activity should
have attributes duration and cost. The expected tool support for the feature is such that,
when a new class with the given stereotype is created, the predefined attributes are
prompted in the attribute definition window and the user can select them and define the
relevant attribute values. The current UML version 1.4 offers the mechanism of tagged
values attached to a stereotype for this purpose, but none of well-known tools implements
this mechanism in a usable way, a direct association of default attributes would be much
more convenient for end-user.

There are also two purely tool-technical requirements for conceptual modelling, but
experience of GRADE usage has shown their great importance in practice.

First, there must be an easy way to maintain the readability of diagrams, because
conceptual models are built for reading by other humans. There can be several solutions
to the diagram readability problem. GRADE solves this problem by its powerful con-
trolled automatic diagram layout mechanism, based on sophisticated graph drawing
algorithms.18 This autolayout mechanism permits the user to insert a new class symbol
where it is most desired. The existing symbols and lines are automatically moved, to give
the necessary space and avoid any overlapping of the new symbol by existing symbols or
lines. The movement is “delicate”, it doesn’t destroy the existing relative placement of
symbols. Thus the main graphical aspect of readability – appropriate positioning and
clustering of class symbols is supported. Association lines are automatically positioned
so that unnecessary line crossings are avoided, thus good traceability of lines is obtained.

Another requirement is a support for large class diagrams. Conceptual models of
complicated systems tend to be large because human understanding frequently requires to
see the whole “big picture”. GRADE supports maintenance of extra large class diagrams,
firstly, by its autolayout mechanism, which works efficiently also for diagrams with hun-
dreds of classes. In addition, a special diagram zooming feature is provided, similar to
that typically available in camcorders. But for extra large diagrams even this may be in-
sufficient. Therefore GRADE supports views for class diagrams. The user can maintain a
large diagram via views corresponding to subsystems, then any updates will be automati-
cally transferred to other relevant views and to the main diagram.

HOW TO COMPREHEND LARGE AND COMPLICATED SYSTEMS 11

Browser

Resource

User

Server

URL

Server software World Wide Web Architecture Class Diagram

Password

Example_4

Server

Example_5

Example_6

File

<<<mailto:Jevgenijs_Rogovs@swh-t.lv>>>
Copyright © 2001 by Jevgenijs Rogovs

Searchpart

- human agent (actor)

File_
system

Workstation

Username

WWW_browser

Static_resource

Additional_
information

Static_page
HTTP_server_
software

Embeddable_
resource

User

NNTP

FTP

Protocol

WWW

WWW_resource

Displayable
_resource

URL

Protocol
_name Unified

Resource
Locator

Dynamic
_image

Static_
image

Image

Dynamic
_page Hyperlink

Server_file_
system

Plug-in_
module

World Wide Web

Dynamic_
resource

HTML_page

HTTP

Enter

Save

Browser
_window

Example_1

Example_2 - auxiliary design entity
 (abstract class)

Example_3 - action or process

Domain
Name System

DNS_name

Resource_path

Authorization
_data

Port_number

Netware_Web_Server
<<<http://www.novell.com/products/netware/>>>

IIS
<<<http://www.microsoft.com/ntserver/web/exec/>>>

Enterprise_Server
<<<http://home.netscape.com/enterprise/>>>

iPlanet
<<<http://www.sun.com/software/iplanet/>>>

Internet Information Server

Apache
<<<http://httpd.apache.org/>>>

Send

- software entity

- hardware entity

- general class

runs_on
located_
on

stored_
in

has

has

belongs_to

structure_
depends_on

made_accessible
_by_running

Agent

Theme

used_to_
transmit

identifies

is_
identified
_by

resides
_in

points
_to

transmits

Theme

used_to_
access

shown_
underlined
_in

Recipient

uses

Theme

requests

Agent

Agent

Recipientruns_
on

used_to_
access

is_
displayed
_by

can_click_on

identifies

provides

connects
_to

identifies

identifies

identifies

Recipient

Fig.17 Conceptual model of Web architecture (part)

12 J.BARZDINS, A.KALNINS

One novel idea is to add simple multimedia facilities to the class diagram, more pre-
cisely, to add speech. In this way each class could “explain" itself in a spoken text when
selected in the tool. The most important feature in this context is the presentation facility
where classes and associations are automatically highlighted (by a moving cursor) in the
desired order and spoken comments are given accordingly. This feature employs the in-
herent human capability to see and listen simultaneously. The automatic highlighting is
very useful for understanding large models, since it is the viewing of parts of the diagram
in the order conceived by the author that reveals the content in the best way. The presen-
tation feature exists in the GRADE tool since the version 4.0.9 in 1999.11 The described
feature has its highest value in cases when a conceptual model has to be understood by a
reader without the presence of the author, e.g. when a model is downloaded via Internet.

It should be mentioned that in fact the problem here is more general – how to link
formal modelling methods with multimedia in order to ease the perception of a model.

9. CONCLUSIONS

Evidently, the conceptual modelling is the main facility for comprehending compli-
cated systems (banks, insurance companies, airports etc). In addition to application of
conceptual modelling for such important practical goals, we have obtained a good experi-
ence in education-related conceptual modelling of Internet architecture, GSM system
principles, DCOM component architecture etc. This model building is a very stimulating
job for students to understand in details various sophisticated computer-based systems.

REFERENCES

1. J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, W.Lorensen, Object-oriented Modeling and Design, Prentice-

Hall (1991)
2. J.Martin, Principles of object-oriented analysis and design, Prentice Hall (1993)
3. G.Booch, I.Jackobson, J.Rumbaugh, The Unified Modeling Language User Guide, Addison-Wesley (1999)
4. H.-E.Eriksson, M.Penker, UML Toolkit, Wiley Computer Publishing (1998)
5. P.Harmon, M.Watson, Understanding UML, Morgan Kaufmann Publishers (1998)
6. C.Larman, Applying UML and Patterns, Prentice-Hall,2nd ed. (2002)
7. P.-A.Muller, Instant UML, Wrox Press Ltd. (1997)
8. I.Jackobson, G.Booch, J.Rumbaugh, The Unified Software Development Process, Addison-Wesley (1999)
9. G.Booch, I.Jackobson, J.Rumbaugh, The Unified Modeling Language Reference Manual, Addison-Wesley

(1999)
10. M.Fowler, UML distilled , Addison-Wesley (1997)
11. GRADE tools; http://www.gradetools.com/
12. Object Role Modeling ; htpp:// www.orm.net
13. T.Halpin, UML data models from an ORM perspective (part 8), Journal of Conceptual Modeling (April

1999)
14. J.F.Sowa, Knowledge Representation, Brooks/Cole (2000)
15.A.-W. Scheer, ARIS Business Process Modeling, Springer (2000)
16. J.Warmer and A.Kleppe, The Object Constraint Language, Addison-Wesley (1999)
17. N.Guarino and C.Welty, Evaluating Ontological Decisions with ONTOCLEAN, Communications of the

ACM (February, 2002) vol. 45, N.2, p.61-65
18.P.Kikusts, P.Rucevskis, Layout algorithms of graph-like diagrams for GRADE, Windows graphical editors,
 LNCS (1996), v.1027, p.361-364

	HOW TO COMPREHEND LARGE AND COMPLICATED SYSTEMS
	
	Janis Barzdins, Audris Kalnins*

	1. INTRODUCTION
	2. BRIEF NOTES ON SEMANTICS OF CLASS DIAGRAMS
	3. HOW TO DESCRIBE ACTIVITIES BY CLASS DIAGRAMS

	Figure 2. Simple activity
	4. NEW PREDEFINED CONSTRAINTS FOR ASSOCIATIONS
	5. EXISTING MODEL STRUCTURING FEATURES AND THEIR USAGE
	6. NEW STRUCTURING FEATURE – F�
	7. SOME METHODOLOGICAL ADVICES
	8. REQUIREMENTS TO TOOLS FOR CONCEPTUAL MODELLING
	9. CONCLUSIONS

	REFERENCES

