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Abstract.  In this paper a sequence of model transformation languages L0, L1, 
L2 is defined. The first language L0 is very simple, and for this language it is 
easy to build an efficient compiler to C++. The next language L1 is an 
extension of L0, and it contains powerful pattern definition facilities. The last 
language L2 is of sufficiently high level and can be used for implementation of 
traditional pattern-based high level model transformation languages, as well as 
for the development of model transformations directly. For languages L1 and 
L2 efficient compilers have been built using the bootstrapping method: L1 to 
L0 in L0, and L2 to L1 in L1. The results confirm the efficiency of model 
transformation approach for domain specific compiler building. 
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1. INTRODUCTION 
 
A well known fact is that the heart of the most advanced software engineering 
technology – MDA [1] is model transformation languages. In recent years the main 
emphasis has been on the development of industrial transformation languages [2-7]. 
For most of the transformation languages there is an implementation, however, there 
has been no thorough research on transformation language implementation, especially 
on the efficiency aspects. On the other hand, there have been only a few attempts to 
use transformation languages for defining their compilers (to use bootstrapping) 
[5,7,8]. It is a little bit strange taking into the account that the main idea of MDA is to 
use transformation languages for transforming formal design models – also a sort of 
language. And most of the MDA success stories are related to Domain Specific 
Languages – there the corresponding transformations are in fact compilers. One of the 
goals of this paper is demonstrate the usability and efficiency of transformation 
languages namely for defining compilers for transformation languages. The other goal 
of the paper is to propose a very simple, but at the same time sufficiently high level 
transformation language L2, which can be used in practice for direct development of 
model transformations. 

The main results of this paper are the following: 
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• a sequence of transformation languages L0, L1, L2 is offered and each next 
language is obtained from the previous one by adding some features. The final 
language L2 is of pretty high level (it contains a kind of patterns, loops, etc.) 

• the first of languages L0 is very simple, it contains only the basic transformation 
facilities and its complete description can be given in less than two pages (see 
section 2). For this language it is easy to build an efficient compiler to C++ 

• a compiler from Li+1 to Li (i = 0,1) can be easily specified in Li (this can be done 
also in L0). This acknowledges the efficiency of using transformation languages 
for building their compilers as long as an appropriate for bootstrapping language 
sequence has been found (authors claim that they have succeeded) 

• the last language in the sequence L2 is of sufficiently high level for traditional 
pattern-based high level model transformation languages (such as MOLA [6]) to 
be compiled to it in a natural way, with the compiler also being easily definable 
in L2. 

The language L0 and henceforth also Li include also the basic facilities for defining 
metamodels, in order to make these languages self-contained.  

 

2. THE BASE LANGUAGE L0  
 
The purpose of this section is to give a brief overview of the transformation language 
L0. This language is a rather low level procedural textual language, with control 
structures mostly taken from assembler-like languages (and syntax influenced by 
C++). The basic setting of L0 is as for any transformation language - we process a 
model, which is an instance of metamodel (MOF style). But the language constructs 
which are specific to model transformations have been chosen as simple as possible.  

Basically these constructs give programmer the ability: 

• to iterate through instances (both links and objects), 

• to create/delete objects and links. 

• to read / write (change) object attribute values. 

An elementary unit of L0 transformation program is a command (an imperative 
statement). L0 transformation program itself is a transformation, which contains 
several parts: 

• global variable definition part 

• native subprogram (function or procedure) declaration part (used C++ library 
function headers) 

• L0 subprogram definition part (It is expected that exactly one subprogram in 
this part is labeled with the reserved word main.  The subprogram, which is 
labeled with this reserved word defines the entry point of the transformation.). 
An L0 subprogram definition also consists of several parts: 



 Subprogram header 

 Local variable definitions 

 Keyword begin; 

 Subprogram body definition 

 Keyword end; 

L0 contains the following kinds of commands: 

1. transformation <transformationName>; This command starts a transformation 
definition. 

2. endTransformation; The command ends a transformation definition. 
3. pointer <pointerName> : <className>; Defines a pointer to objects of class 

<className>. 
4. var <varName> : <ElementaryTypeName>; 

 <ElementaryTypeName> is one of Boolean, Integer, Real, String. Defines a 
variable of elementary type. 

5. procedure <procName>(<paramList>); Subprogram header, the (formal) 
parameter list can be empty. Parameter list consists of formal parameter 
definitions separated by “,”. A parameter definition consists of its name, the 
parameter type (the type can be an elementary type or a class from the 
metamodel), and the passing method (parameters can be passed by reference or by 
value). If the parameter is passed by reference, its type name is preceded by the & 
character. 

6. function funcName>(<paramList>): <returnType>; 
Return type name can be an elementary type name or class name.  

7. begin;   Starts subprogram body definition. 

8. end;      Ends subprogram body definition. 

9. return; Returns execution control to caller.  
10. return <identifier>;  Return the value of <identifier> to the caller, the type must 

coincide with the function return type. <identifier> is an elementary variable name 
or pointer name.  

11. call  <subProgName>(<actPrmList>);  Actual parameter list can be empty. The 
actual parameter list consists of identifiers separated by “,”. An identifier can be a 
variable name, pointer name, or a subprogram parameter name. 

12. setVarF <variable>=<funcName>(<actPrmList>);  This command can be used to 
obtain the function result value of an elementary type and assign it to a variable. 
The variable type must coincide with the function return type. 

13. first <pointer> : <className> else <label>;   Positions <pointer> to an arbitrary 
(the first one in an implementation dependent ordering) object of <className>.                                                  
Typically, this command in combination with the next command is used to 
traverse all objects of the given class (including subclass objects). If <className> 



does not have objects, <pointer> becomes null, and execution control is 
transferred to the <label>.  The <className> in this command must be the same 
as (or a subclass of) the class used in pointer definition; if it is a subclass, then the 
pointer value set is narrowed (for the subsequent executions of next). 

14. first <pointer1> : <className> from <pointer2> by <roleName> else <label>;  
Similar to the previous command, the difference is that it positions <pointer1> to 
an arbitrary  class object, which is reachable from <pointer2> by the link 
<roleName>. Similarly, this command in combination with the next command is 
used to traverse all objects linked to an object by the given link type.                                                                        

15. next <pointer>  else <label>; Gets the next object, which satisfies conditions, 
formulated during the execution of the corresponding first and which has not been 
visited (iterated) with this variable yet. If there is no such object, the <pointer> 
becomes null, and execution control is transferred to <label>. 

16. goto <label>; Unconditionally transfers control to <label>, <label> should be 
located in the current subprogram. 

17. label <labelName>; Defines a label with the given name. 
18. addObj <pointer>:<className>; Creates a new object of the class <className>. 
19. addLink <pointer1>.<roleName>.<pointer2>; Creates a new link (of type 

specified by <roleName>) between the objects pointed to by the <pointer1> and 
<pointer2> , respectively. 

20. deleteObj <pointer>; Deletes the object, which is pointed to by <pointer>. 
21. deleteLink <pointer1>.<roleName>.<pointer2>; Deletes link, whose type is 

specified by <roleName>, between objects pointed to by <pointer1> and 
<pointer2>, respectively. 

22. setPointer <pointer1>=<pointer2>;  Sets <pointer1> to the object, which is 
pointed to by <pointer2>; in place of <pointer2> the null constant can be used.  

23. setPointerF <pointer>=<funcName>(<actPrmList>); Sets <pointer> to the object, 
which is returned by <funcName>. 

24. setVar <variable> = <binExpr>; Sets <variable> to <binExpr> value. <binExpr> 
is a binary expression consisting of the following elements: elementary variables, 
subprogram parameters (of elementary types), literals, object attributes and 
standard operators (+,-,*,/,&&,||,!).  

25. setAttr <pointer>.<attrName>=<binExpr>;  Sets the value of attribute 
<attrName> (of the object,  pointed to by <pointer>)  to the <binExpr> value.  

26. type <pointer> == <className>  else <label>; If the type of the pointed object is 
identical to the <className>, then control is transferred to the next command, 
else control is transferred to <label>. In place of the equality symbol == an 
inequality symbol != can be used.  This command is used for determining the 
exact subclass of an object.  

27. var <variable>==<binExpr> else <label>; If the condition is not true then control 
is transferred to <label>. In place of equality symbol other (<, <=, >, >=, !=) 
relational operators compatible with argument types can be used. 



28. attr <pointer>.<attrName> == <binExpr> else <label>; If condition is not true 
then control is transferred to <label>. Other relational operators (<, <=, >, >=, !=) 
can be used too. 

29. link <pointer1>.<roleName>.<pointer2> else <label>; Checks whether there is a 
link (with the type specified by <roleName>) between the objects pointed to by 
<pointer1> and <pointer2>, respectively.  

30. pointer <pointer1>==<pointer2> else <label>; Checks whether the objects 
pointed to by <pointer1> and <pointer2>, respectively, are identical. Instead of 
<pointer2> null can be used, and the inequality symbol can be used too.   

Actually L0 contains also commands for building the relevant metamodel, for details 
see http://Lx.mii.lu.lv/. 

It is easy to see that the language L0 contains only the very basic facilities for 
defining transformations. At the same time, it obviously is complete in the sense of 
its functional capabilities. This is confirmed by the fact that high level transformation 
languages such as MOLA can be successfully compiled to it. We omit this result in 
the form of a theorem, but all informal justifications of this thesis are in place. 
Namely this is why we call L0 the basic transformation language. We start our 
bootstrap approach with this language. 

We conclude this section with a very simple example of L0 - a transformation which 
builds a representation B of a directed graph (where edge connection points are also 
objects) from the simplest one A (where only nodes and edges are present). Figure 1. 
shows the metamodel for both representations. 
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Fig 1. Metamodel for the example. 

The L0 program performing the transformation: 
transformation Graphs; 
main procedure Graph2Graph(); 
  pointer a : ANode; 
  pointer b : BNode; 
  pointer aEd : AEdge; 
  pointer bEd : BEdge; 
  pointer edgeStart : Start; 
  pointer edgeEnd : End; 
  pointer aEdgeStNode : ANode; 
  pointer aEdgeEnNode : ANode; 



  pointer mapBNode : BNode;  
begin;  
  //copy nodes;  
  first a : ANode else aNodeProcessed; 
  label loop Node;  A
  addObj  b : BNode; 
  addLink a . mappedB . b; 
  next a else aNodeProcessed; 
  goto loopANode; 
  label aNodeProcessed; 
  //copy edges; 
  first aEd : AEdge else aEdgesProc; 
  label loopAEdge; 
  addObj bEd : BEdge; 
  addObj edgeStart : Start; 
  addObj edgeEnd : End;      
  addLink bEd.eStart.edgeStart; 
  addLink bEd.eEnd.edgeEnd; 
  //quit if not found;    
  first aEdgeStNode:ANo from aEd by startNode else dgesProc; de  aE
  first mapBNode:BNode from aEdgeStNode by mappedB else 
aEdgesProc; 
  addLink edgeStart.node.mapBNode; 
  first aEdgeEnNode:ANode from aEd by endNode else aEdgesProc;  
  first mapBNode:BNode from aEdgeEnNode by mappedB else 
aEdgesProc; 
  addLink edgeEnd . node. mapBNode; 
  next aEd else aEdgesProc; 
  goto loopAEdge; 
  label aEdgesProc; 
end; 
endTransformation; 
 

3.  IMPLEMENTATION OF L0 
 

The language L0 can be implemented in several ways. The first problem is how 
to store and access the persistent data – the metamodel and its instances. Obviously, a 
kind of data store is required for this. A traditional relational database could be used, 
but they typically have no adequate low level API. Another alternative could be an in-
memory data store, like RDF-oriented Sesame [9] or a MOF-oriented one (EMF[10], 
MDR[11]). However, for this approach we have selected our own metamodel based 
in-memory repository [12], which has an appropriate low level API. Being developed 
over many years for other goals - generic metamodel based tool building [13], this 
repository occurred to be efficient enough for implementing L0. 

API of this repository is implemented as a C++ function library. This library offers: a) 
a system of low-level data retrieval functions that is complete for low-level data query 
programming; b) a selected set of more complicated widely usable data searching 
functions. By means of a sophisticated indexing mechanism, these more complicated 
functions are also efficiently implemented. 



API of this repository includes two groups of functions: 

1. Meta-model management functions for creating, modifying, deleting of classes, 
attributes and associations, querying about their properties, class inheritance etc. 
However, meta-model management functions are used relatively seldom, the 
most heavily used functions belong to the next group. 

2. Instance management. This group of functions, in its turn, also can be subdivided 
in two groups: 

a. functions for creating instances, assigning attribute values, creating links between 
instances, modifying and deleting, querying about instance attributes and links. 
For example: 

  long CreateObject(long ObjTypeId);  // returns objId 
  int DeleteObjectHard(long ObjId); 
  int CreateLink(long LinkTypeId, long ObjId1, long ObjId2); 
  int DeleteLink(long LinkTypeId, long ObjId1, long ObjId2); 
 

b. efficient searching functions(internally these functions use sophisticated indexing 
mechanisms): 

  int GetObjectNum(long ObjTypeId); 
  long GetObjectIdByIndex(long ObjTypeId, int Index); 
  int GetLinkedObjectNum(long ObjId, long LinkTypeId); 
  long GetLinkedObjectIdByIndex(long ObjId, long LinkTypeId, int 
Index); 
 
If a repository with such API is available, then building an L0 compiler (to C++) is 
quite a straightforward job. Such a compiler has been built by one of the authors of 
this paper (S. Rikacovs) in two months (not including L0 debugging facilities). The 
main advantage of using this repository is that the instance management functions in 
L0 (first and next, including the by link options) have close counterparts in the 
repository API. 

The implementation efficiency is also sufficiently high. First, some experiments show 
that efficiency loss with respect to the same transformation manually coded in C++ is 
no more than 1.5 times. Another aspect is efficiency of the selected repository for 
typical transformations, where another group of experiments [12] show that the 
selected repository is at least as efficient as Sesame [9] data store for typical instance 
retrieval operations. 

 

4. THE LANGUAGE L1 
 
The crucial component of any advanced transformation language is some sort of 
pattern definition facilities. This way, the transformation language L1 is obtained 
from L0 by adding pattern definition facilities of a specific new form. In selecting the 
pattern definition method we were guided by two conflicting requirements. On the 
one hand, the pattern concept must be practically usable. On the other hand, it must 
have a simple and efficient implementation by compiler (traditional patterns, e.g. in 



[4,5,6] not always have this property). One of the main results of this paper is the 
proposed pattern definition facility, which satisfies the both requirements. The main 
component of pattern specification is a facility for defining expressions over 
environments of model objects. Our approach is based on a new kind of expressions – 
begin-end expressions, which are defined as command blocks of the kind:  
begin <commandSequence> end.  

Namely, if we execute the block on the given object environment, and reach the end 
command, then the expression value is defined to be true, otherwise it is false. 

For example, the expression (block): 
begin 
  attr p.age==23; 
  attr p.occupation==”Student”; 
end 

has the value true if and only if the pointer p (of type Person) points to an instance, 
whose attribute age has the value 23 and attribute occupation the value 
"Student". 

Some more comments on begin-end expressions must be given – what is meant by not 
reaching the end. If during the block execution we reach an undefined else branch of 
a command (there is no else keyword or it is not followed by a label – this is 
permitted for all else-containing commands of L0) then the expression is defined to 
have the value false. A similar way is to use a goto command without label (but it is 
forbidden to use a label not defined in the block). 

Now, when the begin-end expressions are described, it is possible to define the 
language L1 precisely.  

The language L1 differs from L0 in commands first and next extended by suchthat 
part containing a begin-end expression: 
first <pointer> : <className> suchthat <BeginEndExpression> else 
<label>; 

next <pointer> suchthat <BeginEndExpression> else <label>; 

Now we will explain in some details the role of begin-end expressions for pattern 
definition and compare them to other facilities for pattern definition. Let us assume 
that we have the class diagram ("metamodel") in Figure 2. Such a class diagram can 
be treated also as a signature for formula definition in many-sorted first order logic 
(MS FOL) - an association corresponds to a binary predicate and an attribute to a 
function. We want to define certain patterns for p:Person, i.e., constraints which 
should be satisfied by appropriate Person instances. 
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Fig 2. Metamodel for pattern examples 

To get a deeper insight into the situation, we will define these patterns in several 
languages, starting from the natural language. 

A. p is a Person, whose age is 50 and who works for (i.e., its employer is) the 
Company "UniBank". 

The same pattern can be specified graphically in the MOLA transformation language: 

p : Person
{age=50}

x : Company
{name="UniBank"}employer

 
(in other transformation languages this this can be done in a similar way). 

In MS FOL the same pattern can be represented by the following formula (the free 
variable p has the type Person): 

p.age=50 & ∃ x:Company (x.name="UniBank" & worksFor(p,x)) 

The same pattern can be specified also by a begin-end expression, where p is a 
pointer variable with the type Person: 
begin 
  attr p.age==50; 
  first x:Company suchthat 
  begin 
    attr x.name==”UniBank”; 
    link p.employer.x; 
  end; 
end; 

Let us note that in this context "first x: … suchthat …" is equivalent to "exists x: … 
suchthat …" 

B. Now let us consider a more complicated example: 

p is a Person, who has a child which works for the Company "UniBank". 

 This corresponds to the following MOLA pattern: 

s : Personp : Person x : Company
{name="UniBank"}child employer

, 

The corresponding MS FOL formula is: 

∃ s:Person (hasChild(p,s) & ∃ x:Company (x.name=”UniBank” & 
worksFor(s,x)))  



The corresponding begin-end expression is: 
begin 
  first s:Person suchthat 
  begin 
    link p.child.s; 
    first x:Company suchthat 
    begin 
      attr x.name==”UniBank”; 
    link s.employer.x;   
    end; 
  end; 
end; 

C. Now let us consider a significantly more complicated example: 

p is a Person, whose all adult (not younger than 18) children work for the 
Company "UniBank". 

It is difficult to specify such a pattern in a graphical pattern definition language. At 
the same time it can be specified quite easily as a MS FOL formula and also as a 
begin-end expression. 

The corresponding MS FOL formula is: 

∀ s:Person (s.age>=18 & hasChild(p,s) ⊃ ∃ x:Company 
x.name=”UniBank” & worksFor(s,x) ) 

The corresponding begin-end expression is: 
begin 
  first s:Person suchthat 
  begin 
    link p.child.s; 
    attr s.age>=18; 
    first x:Company suchthat 
    begin 
      attr x.name==”UniBank”; 
      
    end 

link s.employer.x; 

    else L1; 
    goto; 
    label L1; 
  end else L0; 
  goto; 
  label L0; 
end; 

It is easy to check that we can reach the final end iff p points to a Person, which 
satisfies the abovementioned constraint. This begin-end expression actually 
corresponds to the following MS FOL formula (which is equivalent to the formula 
above): 

¬∃ s:Persona (hasChild(p,s) & s.age>=18 & ¬∃ x:Company 
(x.name=”UniBank” & worksFor(s,x))) 



MS FOL apparently is one of the most universal languages for defining patterns. 
However, existing transformation languages avoid the use of MS FOL formulas for 
pattern definition. The reason is that for so universal pattern specification no 
satisfactory (non-exponential) pattern matching algorithm is known (most probably, 
such an algorithm does not exist). Therefore existing transformation languages limit 
in a natural way their pattern definition mechanisms – in accordance with their 
graphical capabilities.  

A natural question arises about the relation between our begin-end expressions and 
MS FOL formulas in the context of pattern definition. The answer is that for pattern 
definition the power of begin-end expressions is not less than that of MS FOL 
formulas. We will not go into details of this problem. Let us note only that the proof 
of this assertion (after the corresponding concepts are made precise enough) is not 
complicated – it is sufficient to trace the inductive definition of MS FOL formulas. 

However, in order to give a deeper insight into begin-end expressions, we explain a 
small fragment of this proof. Let F(p) and G(p) be MS FOL formulas with p as the 
free variable. We assume that we have already built begin-end expressions EF(p) and 
EG(p) which define the same patterns. Namely,  

EF(p) ≡ begin <commandSequence for F> end    

and  

EG (p) ≡ begin <commandSequence for G> end. 

a) Let us consider the formula F(p)&G(p). It is easy to see that the following begin-
end expression defines an equivalent pattern: 
begin <commandSequence for F> <commandSequence for G> end 

b) Now let us consider the formula ¬ F(p). The corresponding begin-end expression 
can be obtained in the following way. Those else-branches inside EF(p) which have 
no label are completed by a certain fixed label, let's say L. The same action is applied 
to goto's without label (such commands are permitted in L1). This action is not 
applied to begin-end expressions which are inside nested suchthat parts. Let us denote 
the transformed begin-end sequence by <commandSequence for ¬F>. It is easy to see 
that the sought for begin-end expression has the following form 

begin <commandSequence for ¬F> goto; label L; end. 

It is easy to see that we can reach the label L (which is the last one in this block and 
therefore reaching it means that the whole expression assumes the value true) iff the 
original expression for F had the value false. 

The other inductive steps for MS FOL formula definition can be treated in a similar 
way.  

In reality begin-end expressions have even more power than pure MS FOL because 
begin-end expressions can contain also operations on elementary variables. 

A question arises why our begin-end expressions are superior to MS FOL for 
specifying patterns. There are three essential reasons for this: 



1. A begin-end expression specifies the command execution order during the 
pattern matching (i.e., the order in which the instances are traversed) 

2. When a pattern is matched all its elements are assigned an identity which can 
be used further for referencing these elements (a similar approach is used in 
all graphical pattern languages). 

3. Begin-end expressions can be easily compiled to L0 (the obtained L0 
fragment directly implements the pattern matching for the expression)   

 

5. THE FINAL LANGUAGE L2 AND ITS USAGE  
 
The language L2 is obtained from L1 by extending it with a foreach command (loop) 
and the if-then-else command: 
foreach <loopVariable> : <className> suchthat 
<BeginEndExpression> do <L2commSequence> end; 

if <BeginEndExpression> then do <L2commSequence> end else do 
<L2commSequence> end; 

The loop semantics is quite natural: the loop variable traverses all instances of the 
class, which satisfy the suchthat condition, for each such instance the do-end block is 
executed (explicit jumping out of the loop body is prohibited). The foreach command 
may be used also inside a suchthat block. 

The language L2 has at least two important usage areas. On the one hand, it can be 
used as a practical model transformation language. On the other hand, practical high 
level model transformation languages can be adequately compiled to it, and the 
compilers itself can be written in L2 (we consider this kind of usage the main one). 
Currently such a schema has been successfully applied for building an efficient 
implementation of MOLA [6], but the same approach could be applied also for 
implementing MOF QVT [2] and other transformation languages. The main issue for 
such compilations is how to map "completely declarative" traditional patterns to 
patterns with the specified search order in L languages. In some sense the basic idea 
for such a mapping is given in [14].  

 

6. IMPLEMENTATION OF L1 AND L2 
 
Languages L1 and L2 have been implemented according to the bootstrapping 
principles described in the introduction.  

A compiler from L1 to L0 has been implemented in L0 (as a set of recursive 
procedures). It contains about 200 lines of L0 and has been written in one month (E. 
Rencis). Though L1 includes a pattern definition mechanism even more powerful than 
that of MS FOL, implementation of L1 patterns is relatively simple since the search 
order of pattern elements is precisely specified in the language. Actually the 



command sequence defining a begin-end expression can quite easily be transformed 
into an equivalent sequence of L0 commands, using recursion for nested expressions.  

To illustrate the idea, we will show briefly the schema how the L1 command  
first <pointer> : <className> suchthat <BeginEndExpression> else 
<label>; 
can be compiled to L0 commands. By means of first, next and goto commands a 
simple loop is organized which scans all instances of the given class. The "body" of 
this loop contains slightly modified commands form the begin-end expression – 
commands with missing (or empty) else-branch are "redirected" to a new label in the 
else-case. Then reaching this new label would mean that this suchthat fails on the 
given instance and the next instance must be tried. If, on the contrary, the end of the 
loop body is reached, the given instance satisfies the whole suchthat and the job is 
done. If a command within the expression body is not an L0 command, but a true L1 
command, the same procedure is applied recursively. This compilation schema can be 
illustrated by the following table: 

Table 1. Compilation schema from L1 to L0 

L1 L0 
first <objName> : <className> 

suchthat 

begin 

  command_1; 

  command_2; 

  ... 

  command_n; 

end 

else <labelName>; 

first <objName> : <className>  

  else <labelName>; 

label _L_i; 

command_1 [else _L_i+1]; 

command_2 [else _L_i+1]; 

... 

command_n [else _L_i+1]; 

goto _L_i+2; 

label _L_i+1; 

next <objName> else <labelName>; 

goto _L_i; 

label _L_i+2; 

 

The compiler from L2 to L1 is also relatively simple (about 560 lines of L0).  

Both L1 and L2 compilers rely on the metamodel of L languages (Figure 3, bold 
classes/associations correspond to elements of L1, "extra bold" to L2). Compilation of 
Li+1 to Li actually converts into a transformation of models (i.e., Li+1 programs) 
corresponding to the given metamodel. As it was already mentioned, this 
transformation occurrs to be relatively simple. 
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class: String

Pointer
name: String
expr: String

Link
name1: String
name2: String
assoc: String

NoLink
name1: String
name2: String
assoc: String

Command

Comblock

Scom
text: String

Gotocom
labName: String

FNcom
type: String
name: String
text: String
else: String

Ecom
text: String
else: String

Foreachcom
name: String
text: String

Parameter
name: String
type: String
byRef: Boolean

Transformation
name: String

Procfunct
name: String
return type: String
is main: Boolean
is native: Boolean
text: String

Next
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name

start

 0..1

 0..1

def
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 *

 0..1

block
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param

ownerpf

 0..1

 0..1

transf

pf 0..1  *

 procfunct
block 0..1
 0..1

prev

 next

 0..1

 0..1

prev

 next

 0..1

 0..1

ifThenKom2

else1

 0..1

 0..1

name

if1

 0..1

 0..1

ifThenKom1

then1

 0..1

 0..1

name2

suchthat2

 0..1

 0..1

name

foreach1

 0..1

 0..1

name

suchthat1

 *

 0..1

 
Fig. 3. Metamodel of L0 to L2 

 

7. CONCLUSIONS 
 
It was many years ago, when the first author of this paper was a PhD student of B. A. 
Trakhtenbrot and studied the most general concept of automata (so called growing 



automata [15]), based on Kolmogorov-Uspenskii machines [16]. The Kolmogorov-
Uspenskii machine, in contrast to Turing machine, can process arbitrary constructive 
objects ("colored graphs"), which can change their topology during the processing. At 
that time it was merely an instrument for studying theoretical capabilities of 
algorithms and automata.  

Several decades have passed until similar ideas have reified into a powerful software 
engineering tool, now named Model Transformation Languages. Transformation 
languages can be regarded also as practical languages for programming Kolmogorov-
Uspenskii machines. 
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