
Model Transformation Languages and their
Implementation by Bootstrapping Method

Janis Barzdins, Audris Kalnins, Edgars Rencis, Sergejs Rikacovs

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia, +3717224363

janis.barzdins@mii.lu.lv, audris@mii.lu.lv, edgars.rencis@latnet.lv, rikachovs@gmail.com

Abstract. In this paper a sequence of model transformation languages L0, L1,
L2 is defined. The first language L0 is very simple, and for this language it is
easy to build an efficient compiler to C++. The next language L1 is an
extension of L0, and it contains powerful pattern definition facilities. The last
language L2 is of sufficiently high level and can be used for implementation of
traditional pattern-based high level model transformation languages, as well as
for the development of model transformations directly. For languages L1 and
L2 efficient compilers have been built using the bootstrapping method: L1 to
L0 in L0, and L2 to L1 in L1. The results confirm the efficiency of model
transformation approach for domain specific compiler building.

Keywords. model transformation language, compiler, bootstrapping.

1. INTRODUCTION

A well known fact is that the heart of the most advanced software engineering
technology – MDA [1] is model transformation languages. In recent years the main
emphasis has been on the development of industrial transformation languages [2-7].
For most of the transformation languages there is an implementation, however, there
has been no thorough research on transformation language implementation, especially
on the efficiency aspects. On the other hand, there have been only a few attempts to
use transformation languages for defining their compilers (to use bootstrapping)
[5,7,8]. It is a little bit strange taking into the account that the main idea of MDA is to
use transformation languages for transforming formal design models – also a sort of
language. And most of the MDA success stories are related to Domain Specific
Languages – there the corresponding transformations are in fact compilers. One of the
goals of this paper is demonstrate the usability and efficiency of transformation
languages namely for defining compilers for transformation languages. The other goal
of the paper is to propose a very simple, but at the same time sufficiently high level
transformation language L2, which can be used in practice for direct development of
model transformations.

The main results of this paper are the following:

mailto:janis.barzdins@mii.lu.lv
mailto:audris@mii.lu.lv
mailto:edgars.rencis@latnet.lv
mailto:rikachovs@gmail.com

• a sequence of transformation languages L0, L1, L2 is offered and each next
language is obtained from the previous one by adding some features. The final
language L2 is of pretty high level (it contains a kind of patterns, loops, etc.)

• the first of languages L0 is very simple, it contains only the basic transformation
facilities and its complete description can be given in less than two pages (see
section 2). For this language it is easy to build an efficient compiler to C++

• a compiler from Li+1 to Li (i = 0,1) can be easily specified in Li (this can be done
also in L0). This acknowledges the efficiency of using transformation languages
for building their compilers as long as an appropriate for bootstrapping language
sequence has been found (authors claim that they have succeeded)

• the last language in the sequence L2 is of sufficiently high level for traditional
pattern-based high level model transformation languages (such as MOLA [6]) to
be compiled to it in a natural way, with the compiler also being easily definable
in L2.

The language L0 and henceforth also Li include also the basic facilities for defining
metamodels, in order to make these languages self-contained.

2. THE BASE LANGUAGE L0

The purpose of this section is to give a brief overview of the transformation language
L0. This language is a rather low level procedural textual language, with control
structures mostly taken from assembler-like languages (and syntax influenced by
C++). The basic setting of L0 is as for any transformation language - we process a
model, which is an instance of metamodel (MOF style). But the language constructs
which are specific to model transformations have been chosen as simple as possible.

Basically these constructs give programmer the ability:

• to iterate through instances (both links and objects),

• to create/delete objects and links.

• to read / write (change) object attribute values.

An elementary unit of L0 transformation program is a command (an imperative
statement). L0 transformation program itself is a transformation, which contains
several parts:

• global variable definition part

• native subprogram (function or procedure) declaration part (used C++ library
function headers)

• L0 subprogram definition part (It is expected that exactly one subprogram in
this part is labeled with the reserved word main. The subprogram, which is
labeled with this reserved word defines the entry point of the transformation.).
An L0 subprogram definition also consists of several parts:

 Subprogram header

 Local variable definitions

 Keyword begin;

 Subprogram body definition

 Keyword end;

L0 contains the following kinds of commands:

1. transformation <transformationName>; This command starts a transformation
definition.

2. endTransformation; The command ends a transformation definition.
3. pointer <pointerName> : <className>; Defines a pointer to objects of class

<className>.
4. var <varName> : <ElementaryTypeName>;

 <ElementaryTypeName> is one of Boolean, Integer, Real, String. Defines a
variable of elementary type.

5. procedure <procName>(<paramList>); Subprogram header, the (formal)
parameter list can be empty. Parameter list consists of formal parameter
definitions separated by “,”. A parameter definition consists of its name, the
parameter type (the type can be an elementary type or a class from the
metamodel), and the passing method (parameters can be passed by reference or by
value). If the parameter is passed by reference, its type name is preceded by the &
character.

6. function funcName>(<paramList>): <returnType>;
Return type name can be an elementary type name or class name.

7. begin; Starts subprogram body definition.

8. end; Ends subprogram body definition.

9. return; Returns execution control to caller.
10. return <identifier>; Return the value of <identifier> to the caller, the type must

coincide with the function return type. <identifier> is an elementary variable name
or pointer name.

11. call <subProgName>(<actPrmList>); Actual parameter list can be empty. The
actual parameter list consists of identifiers separated by “,”. An identifier can be a
variable name, pointer name, or a subprogram parameter name.

12. setVarF <variable>=<funcName>(<actPrmList>); This command can be used to
obtain the function result value of an elementary type and assign it to a variable.
The variable type must coincide with the function return type.

13. first <pointer> : <className> else <label>; Positions <pointer> to an arbitrary
(the first one in an implementation dependent ordering) object of <className>.
Typically, this command in combination with the next command is used to
traverse all objects of the given class (including subclass objects). If <className>

does not have objects, <pointer> becomes null, and execution control is
transferred to the <label>. The <className> in this command must be the same
as (or a subclass of) the class used in pointer definition; if it is a subclass, then the
pointer value set is narrowed (for the subsequent executions of next).

14. first <pointer1> : <className> from <pointer2> by <roleName> else <label>;
Similar to the previous command, the difference is that it positions <pointer1> to
an arbitrary class object, which is reachable from <pointer2> by the link
<roleName>. Similarly, this command in combination with the next command is
used to traverse all objects linked to an object by the given link type.

15. next <pointer> else <label>; Gets the next object, which satisfies conditions,
formulated during the execution of the corresponding first and which has not been
visited (iterated) with this variable yet. If there is no such object, the <pointer>
becomes null, and execution control is transferred to <label>.

16. goto <label>; Unconditionally transfers control to <label>, <label> should be
located in the current subprogram.

17. label <labelName>; Defines a label with the given name.
18. addObj <pointer>:<className>; Creates a new object of the class <className>.
19. addLink <pointer1>.<roleName>.<pointer2>; Creates a new link (of type

specified by <roleName>) between the objects pointed to by the <pointer1> and
<pointer2> , respectively.

20. deleteObj <pointer>; Deletes the object, which is pointed to by <pointer>.
21. deleteLink <pointer1>.<roleName>.<pointer2>; Deletes link, whose type is

specified by <roleName>, between objects pointed to by <pointer1> and
<pointer2>, respectively.

22. setPointer <pointer1>=<pointer2>; Sets <pointer1> to the object, which is
pointed to by <pointer2>; in place of <pointer2> the null constant can be used.

23. setPointerF <pointer>=<funcName>(<actPrmList>); Sets <pointer> to the object,
which is returned by <funcName>.

24. setVar <variable> = <binExpr>; Sets <variable> to <binExpr> value. <binExpr>
is a binary expression consisting of the following elements: elementary variables,
subprogram parameters (of elementary types), literals, object attributes and
standard operators (+,-,*,/,&&,||,!).

25. setAttr <pointer>.<attrName>=<binExpr>; Sets the value of attribute
<attrName> (of the object, pointed to by <pointer>) to the <binExpr> value.

26. type <pointer> == <className> else <label>; If the type of the pointed object is
identical to the <className>, then control is transferred to the next command,
else control is transferred to <label>. In place of the equality symbol == an
inequality symbol != can be used. This command is used for determining the
exact subclass of an object.

27. var <variable>==<binExpr> else <label>; If the condition is not true then control
is transferred to <label>. In place of equality symbol other (<, <=, >, >=, !=)
relational operators compatible with argument types can be used.

28. attr <pointer>.<attrName> == <binExpr> else <label>; If condition is not true
then control is transferred to <label>. Other relational operators (<, <=, >, >=, !=)
can be used too.

29. link <pointer1>.<roleName>.<pointer2> else <label>; Checks whether there is a
link (with the type specified by <roleName>) between the objects pointed to by
<pointer1> and <pointer2>, respectively.

30. pointer <pointer1>==<pointer2> else <label>; Checks whether the objects
pointed to by <pointer1> and <pointer2>, respectively, are identical. Instead of
<pointer2> null can be used, and the inequality symbol can be used too.

Actually L0 contains also commands for building the relevant metamodel, for details
see http://Lx.mii.lu.lv/.

It is easy to see that the language L0 contains only the very basic facilities for
defining transformations. At the same time, it obviously is complete in the sense of
its functional capabilities. This is confirmed by the fact that high level transformation
languages such as MOLA can be successfully compiled to it. We omit this result in
the form of a theorem, but all informal justifications of this thesis are in place.
Namely this is why we call L0 the basic transformation language. We start our
bootstrap approach with this language.

We conclude this section with a very simple example of L0 - a transformation which
builds a representation B of a directed graph (where edge connection points are also
objects) from the simplest one A (where only nodes and edges are present). Figure 1.
shows the metamodel for both representations.

ANode BNode

AEdge
BEdge

End
Start

mappedA
mappedB 1

 1 node

connectedEnd

 1

 *

incoming

eEnd

 1

 1

connectedStart
node
 *

 1

outgoing

eStart
 1

 1

incoming

endNode

 *

 1

outgoing

startNode

 *

 1

Fig 1. Metamodel for the example.

The L0 program performing the transformation:
transformation Graphs;
main procedure Graph2Graph();
 pointer a : ANode;
 pointer b : BNode;
 pointer aEd : AEdge;
 pointer bEd : BEdge;
 pointer edgeStart : Start;
 pointer edgeEnd : End;
 pointer aEdgeStNode : ANode;
 pointer aEdgeEnNode : ANode;

 pointer mapBNode : BNode;
begin;
 //copy nodes;
 first a : ANode else aNodeProcessed;
 label loop Node; A
 addObj b : BNode;
 addLink a . mappedB . b;
 next a else aNodeProcessed;
 goto loopANode;
 label aNodeProcessed;
 //copy edges;
 first aEd : AEdge else aEdgesProc;
 label loopAEdge;
 addObj bEd : BEdge;
 addObj edgeStart : Start;
 addObj edgeEnd : End;
 addLink bEd.eStart.edgeStart;
 addLink bEd.eEnd.edgeEnd;
 //quit if not found;
 first aEdgeStNode:ANo from aEd by startNode else dgesProc; de aE
 first mapBNode:BNode from aEdgeStNode by mappedB else
aEdgesProc;
 addLink edgeStart.node.mapBNode;
 first aEdgeEnNode:ANode from aEd by endNode else aEdgesProc;
 first mapBNode:BNode from aEdgeEnNode by mappedB else
aEdgesProc;
 addLink edgeEnd . node. mapBNode;
 next aEd else aEdgesProc;
 goto loopAEdge;
 label aEdgesProc;
end;
endTransformation;

3. IMPLEMENTATION OF L0

The language L0 can be implemented in several ways. The first problem is how
to store and access the persistent data – the metamodel and its instances. Obviously, a
kind of data store is required for this. A traditional relational database could be used,
but they typically have no adequate low level API. Another alternative could be an in-
memory data store, like RDF-oriented Sesame [9] or a MOF-oriented one (EMF[10],
MDR[11]). However, for this approach we have selected our own metamodel based
in-memory repository [12], which has an appropriate low level API. Being developed
over many years for other goals - generic metamodel based tool building [13], this
repository occurred to be efficient enough for implementing L0.

API of this repository is implemented as a C++ function library. This library offers: a)
a system of low-level data retrieval functions that is complete for low-level data query
programming; b) a selected set of more complicated widely usable data searching
functions. By means of a sophisticated indexing mechanism, these more complicated
functions are also efficiently implemented.

API of this repository includes two groups of functions:

1. Meta-model management functions for creating, modifying, deleting of classes,
attributes and associations, querying about their properties, class inheritance etc.
However, meta-model management functions are used relatively seldom, the
most heavily used functions belong to the next group.

2. Instance management. This group of functions, in its turn, also can be subdivided
in two groups:

a. functions for creating instances, assigning attribute values, creating links between
instances, modifying and deleting, querying about instance attributes and links.
For example:

 long CreateObject(long ObjTypeId); // returns objId
 int DeleteObjectHard(long ObjId);
 int CreateLink(long LinkTypeId, long ObjId1, long ObjId2);
 int DeleteLink(long LinkTypeId, long ObjId1, long ObjId2);

b. efficient searching functions(internally these functions use sophisticated indexing
mechanisms):

 int GetObjectNum(long ObjTypeId);
 long GetObjectIdByIndex(long ObjTypeId, int Index);
 int GetLinkedObjectNum(long ObjId, long LinkTypeId);
 long GetLinkedObjectIdByIndex(long ObjId, long LinkTypeId, int
Index);

If a repository with such API is available, then building an L0 compiler (to C++) is
quite a straightforward job. Such a compiler has been built by one of the authors of
this paper (S. Rikacovs) in two months (not including L0 debugging facilities). The
main advantage of using this repository is that the instance management functions in
L0 (first and next, including the by link options) have close counterparts in the
repository API.

The implementation efficiency is also sufficiently high. First, some experiments show
that efficiency loss with respect to the same transformation manually coded in C++ is
no more than 1.5 times. Another aspect is efficiency of the selected repository for
typical transformations, where another group of experiments [12] show that the
selected repository is at least as efficient as Sesame [9] data store for typical instance
retrieval operations.

4. THE LANGUAGE L1

The crucial component of any advanced transformation language is some sort of
pattern definition facilities. This way, the transformation language L1 is obtained
from L0 by adding pattern definition facilities of a specific new form. In selecting the
pattern definition method we were guided by two conflicting requirements. On the
one hand, the pattern concept must be practically usable. On the other hand, it must
have a simple and efficient implementation by compiler (traditional patterns, e.g. in

[4,5,6] not always have this property). One of the main results of this paper is the
proposed pattern definition facility, which satisfies the both requirements. The main
component of pattern specification is a facility for defining expressions over
environments of model objects. Our approach is based on a new kind of expressions –
begin-end expressions, which are defined as command blocks of the kind:
begin <commandSequence> end.

Namely, if we execute the block on the given object environment, and reach the end
command, then the expression value is defined to be true, otherwise it is false.

For example, the expression (block):
begin
 attr p.age==23;
 attr p.occupation==”Student”;
end

has the value true if and only if the pointer p (of type Person) points to an instance,
whose attribute age has the value 23 and attribute occupation the value
"Student".

Some more comments on begin-end expressions must be given – what is meant by not
reaching the end. If during the block execution we reach an undefined else branch of
a command (there is no else keyword or it is not followed by a label – this is
permitted for all else-containing commands of L0) then the expression is defined to
have the value false. A similar way is to use a goto command without label (but it is
forbidden to use a label not defined in the block).

Now, when the begin-end expressions are described, it is possible to define the
language L1 precisely.

The language L1 differs from L0 in commands first and next extended by suchthat
part containing a begin-end expression:
first <pointer> : <className> suchthat <BeginEndExpression> else
<label>;

next <pointer> suchthat <BeginEndExpression> else <label>;

Now we will explain in some details the role of begin-end expressions for pattern
definition and compare them to other facilities for pattern definition. Let us assume
that we have the class diagram ("metamodel") in Figure 2. Such a class diagram can
be treated also as a signature for formula definition in many-sorted first order logic
(MS FOL) - an association corresponds to a binary predicate and an attribute to a
function. We want to define certain patterns for p:Person, i.e., constraints which
should be satisfied by appropriate Person instances.

Person
age : Integer

Company
name : String

employee
* employer

*w orksFor

parent0..2
child

*

hasChild

Fig 2. Metamodel for pattern examples

To get a deeper insight into the situation, we will define these patterns in several
languages, starting from the natural language.

A. p is a Person, whose age is 50 and who works for (i.e., its employer is) the
Company "UniBank".

The same pattern can be specified graphically in the MOLA transformation language:

p : Person
{age=50}

x : Company
{name="UniBank"}employer

(in other transformation languages this this can be done in a similar way).

In MS FOL the same pattern can be represented by the following formula (the free
variable p has the type Person):

p.age=50 & ∃ x:Company (x.name="UniBank" & worksFor(p,x))

The same pattern can be specified also by a begin-end expression, where p is a
pointer variable with the type Person:
begin
 attr p.age==50;
 first x:Company suchthat
 begin
 attr x.name==”UniBank”;
 link p.employer.x;
 end;
end;

Let us note that in this context "first x: … suchthat …" is equivalent to "exists x: …
suchthat …"

B. Now let us consider a more complicated example:

p is a Person, who has a child which works for the Company "UniBank".

 This corresponds to the following MOLA pattern:

s : Personp : Person x : Company
{name="UniBank"}child employer

,

The corresponding MS FOL formula is:

∃ s:Person (hasChild(p,s) & ∃ x:Company (x.name=”UniBank” &
worksFor(s,x)))

The corresponding begin-end expression is:
begin
 first s:Person suchthat
 begin
 link p.child.s;
 first x:Company suchthat
 begin
 attr x.name==”UniBank”;
 link s.employer.x;
 end;
 end;
end;

C. Now let us consider a significantly more complicated example:

p is a Person, whose all adult (not younger than 18) children work for the
Company "UniBank".

It is difficult to specify such a pattern in a graphical pattern definition language. At
the same time it can be specified quite easily as a MS FOL formula and also as a
begin-end expression.

The corresponding MS FOL formula is:

∀ s:Person (s.age>=18 & hasChild(p,s) ⊃ ∃ x:Company
x.name=”UniBank” & worksFor(s,x))

The corresponding begin-end expression is:
begin
 first s:Person suchthat
 begin
 link p.child.s;
 attr s.age>=18;
 first x:Company suchthat
 begin
 attr x.name==”UniBank”;

 end

link s.employer.x;

 else L1;
 goto;
 label L1;
 end else L0;
 goto;
 label L0;
end;

It is easy to check that we can reach the final end iff p points to a Person, which
satisfies the abovementioned constraint. This begin-end expression actually
corresponds to the following MS FOL formula (which is equivalent to the formula
above):

¬∃ s:Persona (hasChild(p,s) & s.age>=18 & ¬∃ x:Company
(x.name=”UniBank” & worksFor(s,x)))

MS FOL apparently is one of the most universal languages for defining patterns.
However, existing transformation languages avoid the use of MS FOL formulas for
pattern definition. The reason is that for so universal pattern specification no
satisfactory (non-exponential) pattern matching algorithm is known (most probably,
such an algorithm does not exist). Therefore existing transformation languages limit
in a natural way their pattern definition mechanisms – in accordance with their
graphical capabilities.

A natural question arises about the relation between our begin-end expressions and
MS FOL formulas in the context of pattern definition. The answer is that for pattern
definition the power of begin-end expressions is not less than that of MS FOL
formulas. We will not go into details of this problem. Let us note only that the proof
of this assertion (after the corresponding concepts are made precise enough) is not
complicated – it is sufficient to trace the inductive definition of MS FOL formulas.

However, in order to give a deeper insight into begin-end expressions, we explain a
small fragment of this proof. Let F(p) and G(p) be MS FOL formulas with p as the
free variable. We assume that we have already built begin-end expressions EF(p) and
EG(p) which define the same patterns. Namely,

EF(p) ≡ begin <commandSequence for F> end

and

EG (p) ≡ begin <commandSequence for G> end.

a) Let us consider the formula F(p)&G(p). It is easy to see that the following begin-
end expression defines an equivalent pattern:
begin <commandSequence for F> <commandSequence for G> end

b) Now let us consider the formula ¬ F(p). The corresponding begin-end expression
can be obtained in the following way. Those else-branches inside EF(p) which have
no label are completed by a certain fixed label, let's say L. The same action is applied
to goto's without label (such commands are permitted in L1). This action is not
applied to begin-end expressions which are inside nested suchthat parts. Let us denote
the transformed begin-end sequence by <commandSequence for ¬F>. It is easy to see
that the sought for begin-end expression has the following form

begin <commandSequence for ¬F> goto; label L; end.

It is easy to see that we can reach the label L (which is the last one in this block and
therefore reaching it means that the whole expression assumes the value true) iff the
original expression for F had the value false.

The other inductive steps for MS FOL formula definition can be treated in a similar
way.

In reality begin-end expressions have even more power than pure MS FOL because
begin-end expressions can contain also operations on elementary variables.

A question arises why our begin-end expressions are superior to MS FOL for
specifying patterns. There are three essential reasons for this:

1. A begin-end expression specifies the command execution order during the
pattern matching (i.e., the order in which the instances are traversed)

2. When a pattern is matched all its elements are assigned an identity which can
be used further for referencing these elements (a similar approach is used in
all graphical pattern languages).

3. Begin-end expressions can be easily compiled to L0 (the obtained L0
fragment directly implements the pattern matching for the expression)

5. THE FINAL LANGUAGE L2 AND ITS USAGE

The language L2 is obtained from L1 by extending it with a foreach command (loop)
and the if-then-else command:
foreach <loopVariable> : <className> suchthat
<BeginEndExpression> do <L2commSequence> end;

if <BeginEndExpression> then do <L2commSequence> end else do
<L2commSequence> end;

The loop semantics is quite natural: the loop variable traverses all instances of the
class, which satisfy the suchthat condition, for each such instance the do-end block is
executed (explicit jumping out of the loop body is prohibited). The foreach command
may be used also inside a suchthat block.

The language L2 has at least two important usage areas. On the one hand, it can be
used as a practical model transformation language. On the other hand, practical high
level model transformation languages can be adequately compiled to it, and the
compilers itself can be written in L2 (we consider this kind of usage the main one).
Currently such a schema has been successfully applied for building an efficient
implementation of MOLA [6], but the same approach could be applied also for
implementing MOF QVT [2] and other transformation languages. The main issue for
such compilations is how to map "completely declarative" traditional patterns to
patterns with the specified search order in L languages. In some sense the basic idea
for such a mapping is given in [14].

6. IMPLEMENTATION OF L1 AND L2

Languages L1 and L2 have been implemented according to the bootstrapping
principles described in the introduction.

A compiler from L1 to L0 has been implemented in L0 (as a set of recursive
procedures). It contains about 200 lines of L0 and has been written in one month (E.
Rencis). Though L1 includes a pattern definition mechanism even more powerful than
that of MS FOL, implementation of L1 patterns is relatively simple since the search
order of pattern elements is precisely specified in the language. Actually the

command sequence defining a begin-end expression can quite easily be transformed
into an equivalent sequence of L0 commands, using recursion for nested expressions.

To illustrate the idea, we will show briefly the schema how the L1 command
first <pointer> : <className> suchthat <BeginEndExpression> else
<label>;
can be compiled to L0 commands. By means of first, next and goto commands a
simple loop is organized which scans all instances of the given class. The "body" of
this loop contains slightly modified commands form the begin-end expression –
commands with missing (or empty) else-branch are "redirected" to a new label in the
else-case. Then reaching this new label would mean that this suchthat fails on the
given instance and the next instance must be tried. If, on the contrary, the end of the
loop body is reached, the given instance satisfies the whole suchthat and the job is
done. If a command within the expression body is not an L0 command, but a true L1
command, the same procedure is applied recursively. This compilation schema can be
illustrated by the following table:

Table 1. Compilation schema from L1 to L0

L1 L0
first <objName> : <className>

suchthat

begin

 command_1;

 command_2;

 ...

 command_n;

end

else <labelName>;

first <objName> : <className>

 else <labelName>;

label _L_i;

command_1 [else _L_i+1];

command_2 [else _L_i+1];

...

command_n [else _L_i+1];

goto _L_i+2;

label _L_i+1;

next <objName> else <labelName>;

goto _L_i;

label _L_i+2;

The compiler from L2 to L1 is also relatively simple (about 560 lines of L0).

Both L1 and L2 compilers rely on the metamodel of L languages (Figure 3, bold
classes/associations correspond to elements of L1, "extra bold" to L2). Compilation of
Li+1 to Li actually converts into a transformation of models (i.e., Li+1 programs)
corresponding to the given metamodel. As it was already mentioned, this
transformation occurrs to be relatively simple.

Va Po

Defblock
name: String

Defin
name: String
type: String
text: String

First
class: String
from: String
by: String

Call
name: String

Label
labName: String

DeleteObj
name: String

DeleteLink
name1: String
name2: String
assoc: String

AddObj
name: String
class: String

SetPointer
name: String
expr: String

SetEl
name: String
expr: String

SetAttr
name: String
class: String
expr: String

Return
varName: String

AddLink
name1: String
name2: String
assoc: String

El
name: String
expr: String

Attr
name: String
class: String
expr: String

type
name: String
class: String

Pointer
name: String
expr: String

Link
name1: String
name2: String
assoc: String

NoLink
name1: String
name2: String
assoc: String

Command

Comblock

Scom
text: String

Gotocom
labName: String

FNcom
type: String
name: String
text: String
else: String

Ecom
text: String
else: String

Foreachcom
name: String
text: String

Parameter
name: String
type: String
byRef: Boolean

Transformation
name: String

Procfunct
name: String
return type: String
is main: Boolean
is native: Boolean
text: String

Next

Ifthencom

name

start

 0..1

 0..1

def
db

 *

 0..1

block

pf

 0..1

 0..1

param

ownerpf

 0..1

 0..1

transf

pf 0..1 *

 procfunct
block 0..1
 0..1

prev

 next

 0..1

 0..1

prev

 next

 0..1

 0..1

ifThenKom2

else1

 0..1

 0..1

name

if1

 0..1

 0..1

ifThenKom1

then1

 0..1

 0..1

name2

suchthat2

 0..1

 0..1

name

foreach1

 0..1

 0..1

name

suchthat1

 *

 0..1

Fig. 3. Metamodel of L0 to L2

7. CONCLUSIONS

It was many years ago, when the first author of this paper was a PhD student of B. A.
Trakhtenbrot and studied the most general concept of automata (so called growing

automata [15]), based on Kolmogorov-Uspenskii machines [16]. The Kolmogorov-
Uspenskii machine, in contrast to Turing machine, can process arbitrary constructive
objects ("colored graphs"), which can change their topology during the processing. At
that time it was merely an instrument for studying theoretical capabilities of
algorithms and automata.

Several decades have passed until similar ideas have reified into a powerful software
engineering tool, now named Model Transformation Languages. Transformation
languages can be regarded also as practical languages for programming Kolmogorov-
Uspenskii machines.

References

1. MDA Guide Version 1.0.1. OMG, document omg/03-06-01, 2003.
2. MOF QVT Final Adopted Specification, OMG, document ptc/05-11-01, 2005.
3. F. Jouault, I. Kurtev. Transforming Models with ATL. Proc. of the Satellite Events at the

MoDELS2005 Conference. LNCS, Vol. 3844, Springer-Verlag, 2006, 128–138.
4. A. Agrawal, G. Karsai, F. Shi. Graph Transformations on Domain-Specific Models.

Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-
03-403, 2003.

5. E.D.Willink, UMLX - A Graphical Transformation Language for MDA. 2nd OOPSLA
Workshop on Generative Techniques in the context of Model Driven Architecture ,
OOPSLA'2003, Anaheim, 2003.

6. A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. Model Driven
Architecture: European MDA Workshops: Foundations and Applications, MDAFA 2003
and MDAFA 2004. Revised Selected Papers, LNCS, , Vol. 3599, Springer-Verlag, 2005,
62-76.

7. T. Clark, A. Evans, P. Sammut, J. Willans. Language Driven Development and MDA,
BPTrends, MDA Journal, Oct 2004

8. J. Bezivin, E. Breton, G. Dupe, P. Valduriez. The ATL Transformation-based Model
Management Framework. Research Report No 03.08, 2003, IRIN, Universite de Nantes.

9. J. Broekstra, A. Kampman, F. V. Harmelan. Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. Proc. International Semantic Web Conference,
Sardinia, Italy, 2002.

10. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. Grose. Eclipse Modeling
Framework. Addison Wesley, 2003.

11. Metadata Repository (MDR). URL: http://mdr.netbeans.org/
12. J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Opmanis, K. Podnieks.

Towards Semantic Latvia. Communications of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006). Vilnius, 2006, 203-218.

13. A. Kalnins, J. Barzdins, E. Celms et al. The first step towards generic modeling tool.
Proceedings of the 5th International Baltic Conference on Databases and Information
Systems, Tallin, 2002, Vol. 2, 167-180.

14. A. Kalnins, J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation. 19th
International Conference OOPSLA’2004, Workshop "Best Practices for MDSD",
Vancouver, Canada, Oct. 2004

15. J. M. Barzdin. Universality problems in the theory of growing automata. Dokl. Akad.
Nauk SSSR 157:3, 1964 (in Russian); English translation in: Soviet Math. Dokl. 9, 1964,
535-537.

16. A. N. Kolmogorov, V. A. Uspensky. To the Definition of an Algorithm. Uspekhi. Mat.
Nauk 13:4, 1958, 3-28 (in Russian); English translation in: AMS Translations, ser.2, Vol.
21, 1963, 217-245.

	1. INTRODUCTION
	2. THE BASE LANGUAGE L0
	3. IMPLEMENTATION OF L0
	4. THE LANGUAGE L1
	5. THE FINAL LANGUAGE L2 AND ITS USAGE
	6. IMPLEMENTATION OF L1 AND L2
	7. CONCLUSIONS
	References

