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Abstract. Boolean functions of high deterministic query complexityddow
degree of representing polynomial have different appbeatin theoretical com-
puter science, yet not many are known with such properties aliélyze some
previously known and construct several new functions wiithsproperties.
Keywor ds. Boolean functions, polynomial degree, decision trees.

1. Introduction

Boolean functions being quite simple in definition as reftugmesults from{a, b}™ to
{a,b}, wherea # b can be chosen, are a subject to careful investigation asctey
be used in proving different characteristics of differeminputational models.

For example, Boolean functions can be used to prove diffeesalts considering
quantum decision tree complexity. If we udeg(f) as the degree of multilinear
polynomial representing Boolean functignandD(f) as the deterministic decision
tree complexity off then we haveD(f) > deg(f) [1]. For exact quantum decision
tree complexity there exists a res@liz (f) > degT(f) [6].

For use in quantum computing the challange is to find a funatith high D( f)
and lowdeg( f), that could give some advantages in proving bound-relai@oems.

2. Notation

As noted before we willus®( f), butitis easier to determine the maximum sensitivity
of a Boolean function s(f). Sensitivity off on input(z1, 22, ..., z,) is the number
of of variablesz; with property thatf (z1, z2,...,%i, ..., 2n) # f(z1,22,...,1 —
Liy-os mn)

It has been proved thatf) < D(f) [2]. So, if we knows(f) then we know that
D(f) is at least the same.

To describe Boolean functions we use a description in forrrablfes with each
row for different type of input and each column for each Valéa Each cell contains
"1","0" or "—"in each cell. A table is constructed to show all possibleiismiving
eitherl or 0 as the result of function.0™ or "1" in ith column symbolizes that input

defined by the row must hawg = 0 or z; = 1 resp. while ™" means that the value
of z; is not significant for the input.
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3. Existing results

Currently there are several functions providingf) > deg(f) that are used to create
(e.g. iterations and other various operations) others.

1. Functionf;(z1,x2,x3) being0 iff all variables are equal [1]. D(f;) = 3,
deg(f1) =2

2. Functionf,(z) that equald iff x = z1ze2324 equal€d011, 0100, 0101, 0111,
1000, 1010, 1011, or 1100 with deg(f2) = 2 andD(fs) = 3 [3].

3. FUnCtionfg(Zl,IQ,$3,1'4,35'5,56(5) with d(ig(fd) = 3 and D(f5> =6 by
Kushilevitz, cited by [4]. f3 equalsO when sum ofx; equals0, 4 or 5 or 3
and one of the following is truex; = 20 = 23 = 1, 29 = 23 = x4 = 1,
1‘321‘421‘5:1,1‘4:1‘521‘1:1,1‘521‘1:1‘2:1,
T, = X3 = X = 1, 21 = x4 = 26 = 1, x9 = x4 = x5 = 1,
To = x5 = xg = 1, 3 = 25 = 26 = 1. Otherwise the value i&.

4. Functionfy(x1, x2, x3, 4, x5, T, x7) With D(f) = 7 anddeg(f) = 4 from
[5]. The value of function id iff input is defined in Table 1.

T1 | T2 | X3 | T4 | T5 | Te | 27
- 1|1 -101]—-10 0
-] —10]—-10 0 1
-1 0 1 0 O e
0 — 0 0 — 1 —
1 0 0 — — — 0
0 0 — — 1 0 —
o — 1 — 1 0

Table 1: Functiory, from [5]

4. Construction of Boolean functions

In our search for Boolean functions of specified qualitiesuse the previously men-
tioned way of description and analyze regularities. Fongxa, some kind of regu-
larities can be seen in Table 1.

4.1. Hadamard matrices

A Hadamard matrix is a square matrix containing ohdyand —1s such that when
any two columns or rows are placed side by side, half the adjazells are the same
sign and half the other (excepting from the count an L-sh&palf-frame" bordering
the matrix on two sides which is composed entirelyi f [7]. It is easy to see that
one can change the order of columns and rows, still keepagribperty of Hadamard
matrices.

We use Hadamard matrix of order 8 from [8] shown in Table 2.



1 1 1 1 1

-1{-1 -1 1 -1 1
-171 -1 -1 1 -1
-1 1 1 -1 -1 1 -1
-1 1 1 1 -1 -1 1 -1
-1 -1 1 1 1 -1 -1 1
-1} 1 -1 1 1 1 -1 -1
-1/1-1 1 -1 1 1 1 -1

—_ = =

Table 2: Hadamard matrix had.8.1 from [8]

4.2. Analysisof f,

Table 1 can be constructed easily from Table 2 - first columthfast row are to be
removed, matrix has to be read from the right sidés replaced with)s and1s with
"—"signs (as in Table 3). After that we only have to indertn appropriate positions.

T To I3 T4 Is Te T
— = =Jo0|[=]07]o0
—|=]lo|=|o0]|oO]|-
—lo|—=lo|o|—-|-
ol—-|o|lo|—-|-]|-
—lojo|—-|—-|-1]o0
0]0]- -0 -
0] —1- 0] —-10

Table 3: Building functionf,

First we want the definition of function to satisfy the follmg property:

Property 1 (Rihard’s property) If there exists 1 in cell (i,7) and 1 in cell
(k,1) then exactly one cell from {(i,1),(k,7)} must hold 0 and exactly one -

»__»

This property is a way to:
1. Allow each input be defined with exactly one row

2. Have some kind of minimal distance between each two rdws,having a small
amount ofl s and0s used in the definition.

As one can see the definition ff satisfies Property 1. Of course, there are several
ways to put the s in the matrix of a function. A very regular way is moving thesfir
row of Table 3 to the bottom and puttirig on the diagonal as in Table 4.



T T I3 Ty xIs Te T
- =10 —-=101]60 1
- 101 —=1020 0 1] -
0| —-10 0 I I
- 10 0 11 -1—-120
010 1|1 -1-10] -
0 1] - 0| —-10
1 -1 -0 =10 0

Table 4: Functiorys

Lemma 1 s(f5) =7

Lemma 1 is provided by sensitivity on zero input.
Theorem 1 D(f5) =7

Theorem 3 straight from Lemma 1.
Theorem 2 deg(fs) =4

Theorem 2 is proved by construction.
The number of members of the representing polynomialff{ds the same as for
f1 and equal$6 that shows how similar both the functions are.

4.3. MoreBoolean functions

Using the method showed previously we construct two otherld&m functions with
similar properties representing the inputs givings result in Table 5 and Table 6. It
must be reminded thgy; is the same function af .

Table 5: Functiorys

Theorem 3 D(f7) =11, deg(f7) =6

Deterministic query complexity comes from sensitivity asebree is found by
construction.

Using the same method we can construct Boolean functionstifier numbers of
variables -19, 23, 31, 43, 47 - using Hadamard matrices available from [8]. However,



T1 | T2 | T3 | Tq | T5 | T | T7 | g | Tg | T10 | X11
O —-10107]0 - =10 - 1
- 107010 —=|—=1]—-107]+—= 1 0
O[040 -] —=—]—-—10]—-1]1 0 —
O[O0 | -] —]—101]—-1]1 0 — 0
oO|l-]-1-10]—=11 0| — 0 0
-l =] =107 =11 0| —-10 0 0
- =107 =11 0O(—-101]0 0 —
-1 0] =11 O —-10(01|0O0 — —
0| - 11 O|—-107]01]0]|—1]— —
-1 O|—-(0]O0]O0]|—-1]—-1]— 0
1 Ol —-10101]0|—-1]~—-1-+- 0

Table 6: Functiory;

we have not constructed polynomials to find the degree ofthestrices, but still we
can do some estimates using the method described in [9]. gived the degree of
representing polynomialeg(f) = "T“ for these functions.

5. Futurework

The new functions found do have characteristics demandedtilh for these functions
deg(f) > %, whenD(f) = n, where n - the number of variables. A result needed
is some functionf, with deg(f) < % that could possibly give some quantum query
algorithm that had better advantages against classicaterpart than any now known.

Besides that Hadamard matrices and the likes could provitte mteresting
Boolean functions and thus need deeper investigation.
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